Researchers discover key link in a deadly staph bacteria

Nov 15, 2012 by Melissa Pandika
Staphylococcus aureus could eventually change the way bacterial infections are treated. Credit: MicrobeWiki.Kenyon.edu

(Phys.org)—A new study from Stanford's Department of Chemistry reveals that the cell wall structure of Staphylococcus aureus, a bacterium responsible for a broad range of diseases, depends on growth stage and nutrient availability.

Chemistry graduate student Xiaoxue Zhou had carried out an experiment to find out how antibiotics affect cell wall structure in , a bacterium responsible for a slew of ailments from food poisoning to boils and abscesses.  As she sifted through the data, she uncovered a peculiar result that could ultimately change how bacterial infections are treated.

The study in Biochemistry shows that the Achilles' heel of these germs may be the nutrient glycine, which keeps intact the cell walls of the that cause acne in teenagers and sneak up on elderly .  

 "This started very serendipitously," said Lynette S. Cegelski, an assistant professor of chemistry. The researchers relied on a highly called solid-state , allowing them to study the chemical structure of a major component of the – a large, cage-like molecule called peptidoglycan.

In S. aureus, peptidoglycan units are linked together by a bridge made from molecules of the amino acid glycine, forming a dense, sturdy cell wall that maintains cellular shape and integrity. Shortening of this bridge prevents peptidoglycan linking. Previous research has shown that this shortening impairs and overcomes resistance to the powerful antibiotic methicillin, the defining characteristic of the "hospital bug" MRSA, or methicillin-resistant S. aureus.

While poring over the solid-state NMR results, Zhou noticed a peak in the readings that appeared higher at later growth phases of the bacteria. Further analysis showed that the peak corresponded to a structure missing a glycine bridge.

"It was a control experiment, and we started chasing it down," Zhou said.

'Tipping nature off balance'

While earlier studies already showed that cell wall structure varies with growth phase, what caused these differences remained a mystery. Zhou's NMR results hinted at glycine levels, showing that they also depend on growth phase.

Bacteria use glycine as they divide at an exponential rate, which slows and eventually plateaus as the cells use up nutrients and space. At that point, called the stationary phase, the bacteria have depleted the glycine needed to assemble the cell wall bridges.  

Zhou and Cegelski proved that glycine availability was the "master dial" controlling cell wall structure. As expected, when they turned the dial themselves by starving S. aureus of glycine, peptidoglycan molecules with missing bridges appeared earlier. Supplementing the cells with glycine resulted in relatively normal peptidoglycan with only a few missing bridges.

"It's always the case when you tip nature off balance a little bit, in this case with changing nutrient conditions, you discover something neat," Cegelski said. 

Previous studies have traced alterations in peptidoglycan's structure to antibiotics or genetic changes and have focused on bacteria still undergoing exponential division, when they're thought to be most vulnerable to antibiotics.  Zhou's and Cegelski's study is the first to explore the role that plays in cell wall assembly in bacteria in the stationary phase.   

"People normally only study (bacteria) in the exponential phase … but we think we need to check all the different conditions," Zhou said. "That's why we looked at the stationary phase, which is more relevant in persistent and biofilm-associated infections."

"Bacteria tend to grow as communities, Cegelski explained.  They form complex arrangements called biofilms, which are associated with serious, persistent infections, like those associated with cystic fibrosis.

New strategies

Bacteria can produce their own glycine, so they could theoretically wait until they've made enough to assemble complete peptidoglycan units, with full-length bridges, before transporting them to the cell surface.  Instead, Zhou and Cegelski observed the opposite, with bacteria transporting incomplete units that lack the ability to crosslink.

The next step is to determine whether growing the cells in environments with even less glycine would cause them to transport more of these incomplete peptidoglycan units to their surfaces, eventually causing the cell wall to weaken and the bacterium to burst.

"If you can figure that out … how to mimic that deprivation and encourage the transport of stems without bridges, in a sense molecularly, you could exploit that to develop an antibacterial strategy," Cegelski said.

"The results are just as exciting as what we were originally after," she said, adding that researchers should "always be ready or prepared for these unanticipated discoveries that might lead your research to new heights that you hadn't necessarily charted out."

Explore further: Cells build 'cupboards' to store metals

More information: pubs.acs.org/doi/abs/10.1021/bi3012115

Related Stories

Proteins could offer novel antibiotic target

Oct 06, 2011

Bacteria are single-celled organisms that inhabit almost every environment on the planet, including the bodies of humans and animals. The cell wall maintains the structural integrity of the cell, and enables ...

Researchers analyze how new anti-MRSA abtibiotics function

Jul 28, 2008

A new paper by Shahriar Mobashery, Navari Family Professor in Life Sciences at the University of Notre Dame, and researchers in his lab provides important insights into promising new antibiotics aimed at combating MRSA.

'Surprising link' leads toward a new antibiotic

May 28, 2009

(PhysOrg.com) -- As the best drugs become increasingly resistant to superbugs, McMaster University researchers have discovered a completely different way of looking for a new antibiotic.

Bacteria build walls to withstand antibiotics

Nov 01, 2005

Antibiotic resistant bacteria, which are proliferating in hospitals and causing major headaches for physicians, cheat death by finding ways to fortify their cell walls against the deadly drugs. The question is: how? New res ...

Recommended for you

Cells build 'cupboards' to store metals

Dec 17, 2014

Lawrence Livermore researchers in conjunction with collaborators at University of California (link is external), Los Angeles have found that some cells build intracellular compartments that allow the cell ...

Stunning zinc fireworks when egg meets sperm

Dec 15, 2014

Sparks literally fly when a sperm and an egg hit it off. The fertilized mammalian egg releases from its surface billions of zinc atoms in "zinc sparks," one wave after another, a Northwestern University-led ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.