Do missing Jupiters mean massive comet belts?

Nov 27, 2012
This is an artist impression of the debris disc and planets around the star known as Gliese 581, superimposed on Herschel PACS images at 70, 100 and 160 micrometre wavelengths. The line drawing superimposed on the Herschel image gives a schematic representation of the location and orientation of the star, planets and disc, albeit not to scale. The black oval outline sketched onto the Herschel data represents the innermost boundary of the debris disc; the approximate location of the outermost boundary is represented by the outer set of dashed lines. It is not possible to identify the central star due to smearing of the Herschel data. GJ 581’s planets have masses between 2 and 15 Earth masses and are all located within 0.22 Astronomical Units (AU, where 1 AU is the distance between Earth and our Sun) of the central star. A vast debris disc extends from approximately 25 AU to 60 AU. Background galaxies are also visible in the Herschel field-of-view. Credit: ESA/AOES

(Phys.org)—Using ESA's Herschel space observatory, astronomers have discovered vast comet belts surrounding two nearby planetary systems known to host only Earth-to-Neptune-mass worlds. The comet reservoirs could have delivered life-giving oceans to the innermost planets.

In a previous Herschel study, scientists found that the dusty belt surrounding nearby star Fomalhaut must be maintained by collisions between comets.

In the new Herschel study, two more nearby – GJ 581 and 61 Vir – have been found to host vast amounts of cometary debris.

Herschel detected the signatures of at 200ºC below freezing, in quantities that mean these systems must have at least 10 times more comets than in our own Solar System's Kuiper Belt.

GJ 581, or , is a low-mass M , the most common type of star in the Galaxy. Earlier studies have shown that it hosts at least four planets, including one that resides in the 'Goldilocks Zone' – the distance from the central sun where liquid surface water could exist.

Two planets are confirmed around G-type star 61 Vir, which is just a little less massive than our Sun.

Artist’s impression of the debris disc and planets around the star 61 Vir, superimposed on Herschel PACS images at 70, 100 and 160 micrometre wavelengths. The line drawing superimposed on the Herschel image gives a schematic representation of the location and orientation of the star, planets and disc, albeit not to scale. The black oval outline sketched onto the Herschel data represents the innermost boundary of the debris disc; the approximate location of the outermost boundary is represented by the outer set of dashed lines. It is not possible to identify the central star due to smearing of the Herschel data. The two planets around 61 Vir have masses between 5 and 18 Earth masses and are both located within 0.22 Astronomical Units (AU, where 1 AU is the distance between Earth and our Sun) of the central star. A vast debris disc extends from approximately 30 AU to 100 AU. Credits: ESA/AOES

The planets in both systems are known as 'super-Earths', covering a range of masses between 2 and 18 times that of Earth.

Interestingly, however, there is no evidence for giant Jupiter- or Saturn-mass planets in either system.

The gravitational interplay between Jupiter and Saturn in our own Solar System is thought to have been responsible for disrupting a once highly populated Kuiper Belt, sending a deluge of comets towards the in a that lasted several million years.

"The new observations are giving us a clue: they're saying that in the Solar System we have and a relatively sparse , but systems with only low-mass planets often have much denser Kuiper belts," says Dr Mark Wyatt from the University of Cambridge, lead author of the paper focusing on the debris disc around 61 Vir.

"We think that may be because the absence of a Jupiter in the low-mass planet systems allows them to avoid a dramatic heavy bombardment event, and instead experience a gradual rain of comets over billions of years."

"For an older star like GJ 581, which is at least two billion years old, enough time has elapsed for such a gradual rain of comets to deliver a sizable amount of water to the innermost planets, which is of particular importance for the planet residing in the star's habitable zone," adds Dr Jean-Francois Lestrade of the Observatoire de Paris who led the work on GJ 581.

However, in order to produce the vast amount of dust seen by Herschel, collisions between the comets are needed, which could be triggered by a Neptune-sized planet residing close to the disc.

"Simulations show us that the known close-in planets in each of these systems cannot do the job, but a similarly-sized planet located much further from the star – currently beyond the reach of current detection campaigns – would be able to stir the disc to make it dusty and observable," says Dr Lestrade.

"Herschel is finding a correlation between the presence of massive debris discs and planetary systems with no Jupiter-class planets, which offers a clue to our understanding of how planetary systems form and evolve," says Göran Pilbratt, ESA's project scientist.

Explore further: Can astronomy explain the biblical Star of Bethlehem?

Related Stories

Herschel spots comet massacre around nearby star

Apr 12, 2012

(Phys.org) -- ESA’s Herschel Space Observatory has studied the dusty belt around the nearby star Fomalhaut. The dust appears to be coming from collisions that destroy up to thousands of icy comets every ...

Hunting for transits of Super-Earth GJ 581e

Jun 02, 2011

(PhysOrg.com) -- An international team of astronomers has ruled out transits of a water-rich or hydrogen-helium atmosphere planet for Gliese 581e. The host star itself is relatively quiet which means good ...

Capturing planets

May 22, 2012

(Phys.org) -- The discovery of planets around other stars has led to the realization that alien solar systems often have bizarre features - at least they seem bizarre to us because they were so unexpected. ...

Spitzer detects comet storm in nearby solar system

Oct 20, 2011

(PhysOrg.com) -- NASA's Spitzer Space Telescope has detected signs of icy bodies raining down in an alien solar system. The downpour resembles our own solar system several billion years ago during a period ...

Scientists discover a nearly Earth-sized planet (Update)

Apr 21, 2009

(PhysOrg.com) -- Exoplanet researcher Michel Mayor announces the discovery of the lightest exoplanet found so far. The planet, "e," in the system Gliese 581, is only about twice the mass of our Earth. The ...

Recommended for you

Can astronomy explain the biblical Star of Bethlehem?

Dec 24, 2014

Bright stars top Christmas trees in Christian homes around much of the world. The faithful sing about the Star of Wonder that guided the wise men to a manger in the little town of Bethlehem, where Jesus was ...

Hubbles spies the beautiful galaxy IC 335

Dec 24, 2014

This new NASA/ESA Hubble Space Telescope image shows the galaxy IC 335 in front of a backdrop of distant galaxies. IC 335 is part of a galaxy group containing three other galaxies, and located in the Fornax ...

Image: Multicoloured view of supernova remnant

Dec 22, 2014

Most celestial events unfold over thousands of years or more, making it impossible to follow their evolution on human timescales. Supernovas are notable exceptions, the powerful stellar explosions that make ...

Ultra-luminous X-ray sources in starburst galaxies

Dec 22, 2014

Ultra-luminous X-ray sources (ULXs) are point sources in the sky that are so bright in X-rays that each emits more radiation than a million suns emit at all wavelengths. ULXs are rare. Most galaxies (including ...

When a bright light fades

Dec 22, 2014

Astronomer Charles Telesco is primarily interested in the creation of planets and stars. So, when the University of Florida's giant telescope was pointed at a star undergoing a magnificent and explosive death, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Egleton
2 / 5 (2) Nov 28, 2012
What a huge wealth. Imagine all the O'Neill habitats that could be made out of all that low gravity material. If we got there we could create a civilization that would make superlatives ineffective. And that is but one star.
Back to reality. Is the FED going to print more paper? Yawn.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.