Instrument delivered for NASA's upcoming Mars mission

Nov 19, 2012 by Nancy Neal Jones
The Remote Sensing package aboard the MAVEN spacecraft, was conceived, designed and built by the University of Colorado’s Laboratory for Atmospheric and Space Physics (CU/LASP) at Boulder. This remote sensing instrument will peer into the ultraviolet to offer clues to how Mars might have lost its atmosphere. Credit: Aref Nammari/CU/LASP

(Phys.org)—A remote sensing instrument that will peer into the ultraviolet to offer clues to how Mars might have lost its atmosphere has arrived at Lockheed Martin for integration into NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft.

"The package team built a system that meets all technical requirements and delivered it on schedule and on budget," said David Mitchell, MAVEN project manager from NASA's Goddard Space Flight Center in Greenbelt, Md. "I look forward to the instrument's next level of integration onto the spacecraft and ultimately the science it will provide."

The Remote Sensing package consists of an Imaging UltraViolet Spectrograph (IUVS) and its box, the Remote Sensing Data Processing Unit (RSDPU). The Remote Sensing package was conceived, designed and built by the University of Colorado's Laboratory for Atmospheric and (CU/LASP) at Boulder, under contract to NASA Goddard.

The Imaging UltraViolet Spectrograph collects the light and spreads it out into spectra and records the spectra using imaging detectors. IUVS is the eyes of the instrument. The Remote Sensing Data is the main electronics box that controls IUVS and communicates with the spacecraft. RSDPU receives and executes the commands sent to tell IUVS when and where to look. RSDPU is the brain of the instrument.

"The IUVS performs 'remote sensing,' meaning we can study the planet and its atmosphere at a distance through the light it emits," said Nick Schneider, IUVS lead scientist from CU/LASP. "Ultraviolet light is especially diagnostic of the state of the atmosphere, so our instrument provides the global context of the whole atmosphere for the local measurements made by the rest of the payload."

The Remote Sensing package will be turned on for its initial checkout 21 days after launch. Later in the cruise phase of the mission from Earth to Mars, the package will be powered on twice more for state-of-health checks and in-flight calibration.

"With the delivery of this package, we are shifting from assembling the basic spacecraft to focusing on getting the science instruments onto the spacecraft," said Bruce Jakosky, MAVEN principal investigator from CU/LASP. "This is a major step toward getting us to launch and then getting the science return from the mission."

Launching late next year, MAVEN will be the first mission devoted to understanding the Martian upper atmosphere. The goal of MAVEN is to determine the history of the loss of atmospheric gases to space through time, providing answers about Mars climate evolution. By measuring the current rate of escape to space and gathering enough information about the relevant processes, scientists will be able to infer how the planet's atmosphere evolved in time.

The MAVEN spacecraft will carry two other instrument suites. The Particles and Fields Package, built by the University of California at Berkeley Space Science Laboratory with support from University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics (CU/LASP) and NASA Goddard, contains six instruments that will characterize the solar wind and the ionosphere of the planet. The Neutral Gas and Ion Mass Spectrometer, provided by NASA Goddard, will measure the composition and isotopes of neutral ions.

"Three of the big milestones in an instrument builder's life are the day you get selected to fly on a mission, the day you deliver the instrument to the spacecraft to get ready for launch, and the day that it gets where it's going and data starts flowing back from space," said Mark Lankton, Remote Sensing package program manager from CU/LASP. "The Remote Sensing team is really happy to have gotten to the second milestone, and we can hardly wait to reach the third."

MAVEN's principal investigator is based at CU/LASP. The university will provide science operations, build instruments and lead Education/Public Outreach. NASA Goddard manages the project and is building two of the science instruments for the mission. of Littleton, Colo., is building the spacecraft and is responsible for mission operations. The University of California at Berkeley Space Sciences Laboratory is building science instruments for the mission. NASA's Jet Propulsion Laboratory, Pasadena, Calif., provides navigation support, the Deep Network and the Electra telecommunications relay hardware and operations.

Explore further: Super-black nano-coating to be tested for the first time in space

add to favorites email to friend print save as pdf

Related Stories

MAVEN mission completes major milestone

Jul 22, 2011

(PhysOrg.com) -- The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission reached a major milestone last week when it successfully completed its Mission Critical Design Review (CDR).

NASA selects CU-Boulder to lead $485M Mars mission

Sep 15, 2008

In the largest research contract ever awarded to the University of Colorado at Boulder, the Laboratory for Atmospheric and Space Physics has been selected by NASA to lead a $485 million orbiting space mission ...

MAVEN mission primary structure complete

Sep 26, 2011

NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has reached a new milestone. Lockheed Martin has completed building the primary structure of the MAVEN spacecraft at its Space Systems Company ...

NASA mission asks why Mars has no atmosphere

Oct 07, 2010

(PhysOrg.com) -- NASA this week gave the green light to a mission to Mars that will seek to understand why and how the red planet lost its atmosphere 3-4 billion years ago.

Recommended for you

Why NASA studies the ultraviolet sun

23 minutes ago

(Phys.org) —You cannot look at the sun without special filters, and the naked eye cannot perceive certain wavelengths of sunlight. Solar physicists must consequently rely on spacecraft that can observe ...

Two dynamos drive Jupiter's magnetic field

1 hour ago

(Phys.org) —Superlatives are the trademark of the planet Jupiter. The magnetic field at the top edge of the cloud surrounding the largest member of the solar system is around ten times stronger than Earth's, ...

GPIM spacecraft to validate use of "green" propellant

1 hour ago

(Phys.org) —Milestone progress is being made in readying NASA's Green Propellant Infusion Mission (GPIM) for launch in 2016, a smallsat designed to test the unique attributes of a high-performance, non-toxic, ...

Australian amateur Terry Lovejoy discovers new comet

22 hours ago

It's confirmed! Australian amateur astronomer Terry Lovejoy just discovered his fifth comet, C/2014 Q2 (Lovejoy). He found it August 17th using a Celestron C8 fitted with a CCD camera at his roll-off roof ...

User comments : 0