Insects beware: The sea anemone is coming

Nov 29, 2012

As insects evolve to become resistant to insecticides, the need to develop new ways to control pests grows. A team of scientists from Leuven, Belgium have discovered that the sea anemone's venom harbors several toxins that promise to become a new generation of insecticides that are environmentally friendly and avoid resistance by the insects. Since these toxins disable ion channels that mediate pain and inflammation, they could also spur drug development aimed at pain, cardiac disorders, epilepsy and seizure disorders, and immunological diseases such as multiple sclerosis. This finding is described in the December 2012 issue of The FASEB Journal.

"Are toxins friend or foe? The more we understand these toxins, they are more friend, and less foe," said Jan Tytgat, Ph.D., co-author of this study from the Laboratory of Toxicology at the University of Leuven in Leuven, Belgium. "Toxicology shows us how to exploit Mother Nature's biodiversity for better and healthier living."

To make this discovery, Tytgat and colleagues extracted venom from the sea anemone, Anthopleura elegantissima, and purified three main toxins present in the venom. The toxins were characterized in depth, using biochemical and electrophysiological techniques. This provided insight into their structure, functional role and mechanisms of action. The discovery of these toxins may be considered similar to the discovery of a new drug, as they are compounds which could lead to new insecticides and possibly new treatments for human diseases.

"Because these toxins are aimed at important ion channels present not only in , they form the leading edge of our new biotechnology. Discovery of this useful marine toxin should provide additional incentive to preserve the fragile coral reefs where anemones thrive," said Gerald Weissmann, M.D., Editor-in-Chief of The , "But, given current attitudes, I suspect there's a better chance of a killing a than for us to reverse our inroads on ocean life."

Explore further: Atomic structure of key muscle component revealed

More information: Steve Peigneur, László Béress, Carolina Möller, Frank Marí, Wolf-Georg Forssmann, and Jan Tytgat. A natural point mutation changes both target selectivity and mechanism of action of sea anemone toxins. FASEB J 26:5141-5151, doi:10.1096/fj.12-218479

add to favorites email to friend print save as pdf

Related Stories

Scorpion venom -- bad for bugs, good for pesticides

Apr 27, 2011

Fables have long cast scorpions as bad-natured killers of hapless turtles that naively agree to ferry them across rivers. Michigan State University scientists, however, see them in a different light.

Pinch away the pain

Feb 16, 2010

Scorpion venom is notoriously poisonous -- but it might be used as an alternative to dangerous and addictive painkillers like morphine, a Tel Aviv University researcher claims.

New bacteria toxins against resistant insect pests

Oct 19, 2011

Toxins from Bacillus thuringiensis bacteria (Bt toxins) are used in organic and conventional farming to manage pest insects. Sprayed as pesticides or produced in genetically modified plants, Bt toxins, us ...

Recommended for you

Atomic structure of key muscle component revealed

17 minutes ago

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0