Measuring individual atoms with compact X-ray lasers

Nov 30, 2012
The principle of SACLA. The laser consists of various electron acceleration stages (C-TWA) and focusing elements. Key to achieving short wavelength operation is, however, the design of the undulator (UND). Credit: 2012 Nature Publishing Group

To look at small objects typically requires big machines. For example, the study of single atoms with a laser requires x-ray radiation of such high energy that it is only produced by accelerating electrons in large facilities. Researchers at the RIKEN SPring-8 Center in Harima have developed a more affordable electron laser design, the SPring-8 Angstrom Compact free-electron Laser (SACLA), which is not only compact and therefore economic to build but also delivers x-rays with unprecedented short wavelengths.

User operation of SACLA began in March 2012. Makina Yabashi from the research team describes typical research as non-linear interactions of light and matter, and ultrafast phase-transition in materials.

Construction of a high-energy laser is based on the concept that electrons accelerated by going very fast around a curve also emit radiation. The energy of this radiation, and therefore its wavelength, depends on the acceleration. The tighter the curved path, the shorter the wavelength of the light emitted. This is the operating principle of free electron lasers.

At SPring-8 the aim was to push free electron lasers to new limits by producing ever shorter wavelengths. This means sending electrons on a very tight twisting path in a section of the laser known as the undulator. Normally, the period of the curved is about several centimeters. The SACLA team have realized a period of only 1.8 centimeters by directly placing the magnets that deflect the electron beams into the of the beam. This has enabled a reduction of down to 0.6 ångstrom, which is about the radius of a hydrogen atom.

The benefit of SACLA is that, in comparison to other free-electron lasers, the device is also smaller. "Our x-ray facility has been designed to achieve a much more compact scale compared to those in the US and Europe," explains Yabashi. "The major reduction in construction and operating costs enables many research institutes or universities to build such a machine, and to utilize powerful laser light in a broad range of applications from biology, chemistry to physics," he says.

The team plans to increase the energy density of the laser beam, which would, for example, make biological imaging easier. Already there is strong interest from scientists to use the laser and other institutions are planning similar machines. In the meantime, SACLA is open for business.

Explore further: Biology meets geometry: Describing geometry of common cellular structure

More information: Ishikawa, T., Aoyagi, H., Asaka, T., Asano, Y., Azumi, N., Bizen, T., Ego, H., Fukami, K., Fukui, T., Furukawa, Y., et al. A compact X-ray free-electron laser emitting in the sub-ångström region. Nature Photonics 6, 540–544 (2012). www.nature.com/nphoton/journal… photon.2012.141.html

add to favorites email to friend print save as pdf

Related Stories

First X-ray lasing of SACLA

Jun 17, 2011

RIKEN and the Japan Synchrotron Radiation Research Institute (JASRI) have successfully produced a first beam of X-ray laser light with a wavelength of 1.2 Angstroms. This light was created using SACLA, a cutting-edge X-ray ...

SACLA X-ray free electron laser sets new record

Jun 13, 2011

RIKEN and the Japan Synchrotron Radiation Research Institute (JASRI) have successfully produced a beam of X-ray laser light with a wavelength of 1.2 Angstroms, the shortest ever measured. This record-breaking light was created ...

New research improves quality of free electron laser

Jun 02, 2011

The free electron laser is the next step in the development of equipment to help us see the structure of materials. Nino Čutić at MAX-lab in Lund, Sweden, has done a PhD in further improving the test free electron ...

Laser light in the deep infrared

Aug 23, 2006

Free-electron lasers (FEL) are large and expensive, but they can deliver unique light for research and applications. On August 21, 2006, at the Forschungszentrum Rossendorf (FZR) in Dresden, Germany, the second ...

Recommended for you

High-intensity sound waves may aid regenerative medicine

13 hours ago

Researchers at the University of Washington have developed a way to use sound to create cellular scaffolding for tissue engineering, a unique approach that could help overcome one of regenerative medicine's ...

Formula could shed light on global climate change

17 hours ago

Wright State University researchers have discovered a formula that accurately predicts the rate at which soil develops from the surface to the underlying rock, a breakthrough that could answer questions about ...

New world record for a neutron scattering magnet

18 hours ago

A unique magnet developed by the Florida State University-headquartered National High Magnetic Field Laboratory (MagLab) and Germany's Helmholtz Centre Berlin (HZB) has reached a new world record for a neutron ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.