Fruit fly studies guide investigators to misregulated mechanism in human cancers

Nov 19, 2012
The Trr/COMPASS-like complex regulates the activity of the Cut enhancer, which regulates the activity of the Cut gene in fruit fly embryos. CUT protein is shown in red, while green fluorescent protein marks the fly embryo’s posterior compartment. Credit: Dr. Hans-Martin Herz, Stowers Institute for Medical Research

Changes in how DNA interacts with histones—the proteins that package DNA—regulate many fundamental cell activities from stem cells maturing into a specific body cell type or blood cells becoming leukemic. These interactions are governed by a biochemical tug of war between repressors and activators, which chemically modify histones signaling them to clamp down tighter on DNA or move aside and allow a gene to be expressed.

In the November 19, 2012, online edition of the journal & Development, researchers at the Stowers Institute for Medical Research report findings that may unveil the role of two human genes—MLL3 and MLL4—that are frequently mutated in certain cancers. In addition to its disease implications, the Stowers study exemplifies how the analysis of model organisms like yeast and fruit flies can illuminate human molecular biology.

"We know that fundamental regulatory machineries are highly conserved from yeast to Drosophila to humans," says Stowers Investigator and the study's senior author, Ali Shilatifard, Ph.D., whose lab website describes projects in yeast, fruit flies, and mammalian species. "We use the awesome power of yeast and Drosophila genetics and biochemistry to define the molecular properties of these fundamentally important factors, and then test their function in human cells. In this study, these genes turned out to be frequently mutated in several different types of cancers."

Over a decade ago, studies conducted by Shilatifard's laboratory identified an assembly of proteins known as Set1/COMPASS that biochemically modifies Histone 3 (H3) by planting methyl groups at a very precise location on the histone—namely lysine 4 (K4)—within chromosomes. H3K4 can be mono-, di-, or trimethylated by Set1/COMPASS. H3K4 trimethylation by Set1/COMPASS has now become the hallmark of actively transcribed genes from yeast to human. H3K4 can also be monomethylated, and this modification seems to be specific to enhancers, which are elements that regulate gene expression in a tissue specific manner.

"After we discovered yeast COMPASS, we found that human cells have the same machinery," says Shilatifard. "But rather than one COMPASS methylase, human cells bear six. The question became, why are there six COMPASS family members in ?" However, it has not been clear which COMPASS family member functions as monomethylase on enhancers.

The first clue came from Shilatifard's 2011 Molecular and Cellular Biology study reporting that cells from the fruit fly Drosophila contained three COMPASS family members. In the new study, the group, led by postdoctoral fellow Hans-Martin Herz, Ph.D., unveiled the true fly "monomethylator" by blocking the expression of the components of each of the three candidates and imaging Drosophila tissues to assess methylation of H3K4. Attenuating the fly COMPASS-related complex called Trr (for Trithorax-related) caused genome-wide decreases in H3K4 monomethylation, while disabling the other two candidates did not.

To further the case, Herz collaborated with bioinformatician Alexander Garruss to examine where Trr "sits" genome-wide on fly genes and discovered that it associated with DNA regions called enhancer, the activation zones often flanking a target gene. Enhancers are required to switch genes on, a process Shilatifard likens to how an airline pilot commands his control panel by turning on and off switches to get the plane to move forward and gather enough speed to take off. "We found that Trr needs to move to an enhancer for it to become active," says Herz. "That suggests that Trr's presence orchestrates the transition from inactive to active enhancers."

Two mammalian COMPASS-like complexes structurally resemble Trr, which include proteins called MLL3 and MLL4. Focusing on MLL3, the group cultured mouse embryonic cells lacking MLL3 and undertook a global histone methylation analysis to observe where changes in methylation patterns occurred. They found that H3K4 monomethylation was reduced in enhancer regions.

"MLL3 and MLL4 are mutated in numerous cancers," says Shilatifard. "Researchers have found that many lymphomas have mutations in MLL3 and MLL4."

Herz agrees, noting that mutations in MLL3 and MLL4 are seen in human colorectal cancer, medulloblastoma, breast tumors, and leukemia. "This suggests that activation and deactivation of enhancers could play an important role in cancer pathogenesis," he says. "Understanding which proteins carry out this function or how they control enhancer activity could help us to understand how genes that suppress tumor suppressor genes are deactivated in various cancers."

Explore further: How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass?

Related Stories

Lessons learned from yeast about human leukemia

Dec 05, 2011

The trifecta of biological proof is to take a discovery made in a simple model organism like baker's yeast and track down its analogs or homologs in "higher" creatures right up the complexity scale to people, ...

Jarid2 may break the Polycomb silence

Apr 30, 2012

Historically, fly and human Polycomb proteins were considered textbook exemplars of transcriptional repressors, or proteins that silence the process by which DNA gives rise to new proteins. Now, work by a ...

Recommended for you

Quest to unravel mysteries of our gene network

12 hours ago

There are roughly 27,000 genes in the human body, all but a relative few of them connected through an intricate and complex network that plays a dominant role in shaping our physiological structure and functions.

EU court clears stem cell patenting

14 hours ago

A human egg used to produce stem cells but unable to develop into a viable embryo can be patented, the European Court of Justice ruled on Thursday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.