ELISE investigating new type of heating for ITER

Nov 29, 2012 by Isabella Milch
Ready: IPP’s new ion source (far right), incorporated in the just completed ELISE test rig. The door-sized particle beam produced here is to transport the immense power of 1.2 megawatts. The rest rig was officially commissioned on 27 November 2012 by Professor Ursel Fantz of IPP and Dr. Antonio Masiello of “Fusion for Energy” (Photo: IPP, Robert Haas).

(Phys.org)—Tests for the heating that is to bring the plasma of the ITER international fusion test reactor to a temperature of many million degrees can go ahead from today: After three years of construction, Max Planck Institute for Plasma Physics (IPP) at Garching bei München has officially commissioned the ELISE test rig – the world's largest device of its kind and part of a four-million euro research contract of the "Fusion for Energy" European ITER Agency. Corepiece of the device is an innovative high-frequency ion source developed at IPP. On the ELISE test rig it will now be adapted to the high requirements of ITER.

The two in ITER, each with a cross-section about the size of a door, are to the 800 cubic metre plasma to many million degrees Celsius. Each beam is to pump a heating power of 16.5 megawatts into the plasma. "A giant step" will be taken from today's devices with beam cross-section about the size of a dinner plate to advance to this order of magnitude, states Dr. Peter Franzen, who is working at IPP on the development of the ITER heating: Like the sun, a future is to derive energy from fusion of . To do this, the fuel has to be confined in a magnetic field without wall contact and be heated to an ignition temperature exceeding 100 million degrees. The ITER (Latin for "the way") test reactor, now being built at Cadarache in France as an international project, is to show that a fusion fire providing energy is possible. ITER is to produce a fusion power of 500 megawatts, this being ten times as much as is needed for the plasma heating.

About half of this plasma heating will be taken over by the co-called neutral-particle heating: Fast injected into the plasma transfer their energy to the plasma through collisions. Present-day devices, e.g. the neutral-particle heating of IPP's ASDEX Upgrade fusion device at Garching, can raise the temperature to a multiple of the sun's temperature at the press of a button. The ITER large-scale device will, however, impose new requirements on the standard method: For example, the particles will have to be three to four times as fast as hitherto so that they can penetrate deep enough into the voluminous . Instead of the electrically positively charged ions hitherto used to produce the particle beam, it will now be necessary to use extremely fragile negatively charged ions. A new type of particle source developed at IPP for this purpose was enlisted in the design of ITER in 2007. After successful prototype development the " for Energy" European ITER Agency also awarded IPP the contract for adapting it to ITER's requirements.

The ELISE (Extraction from a Large Ion Source Experiment) test rig, assembled at Garching in the last three years, will now investigate a source already half as large as a future ITER source. The increasing dimension also called for adaptation of the previous technical solutions for the elements of the ion source. In IPP's newly established "ITER Technology and Diagnostics" research division headed by Prof. Dr. Ursel Fantz, ELISE will spend two years checking whether the new ion source can generate a particle beam approaching ITER's requirements. The original-size system will then be investigated by Italy's ENEA research institute at Padua. ELISE and its Italian successor are firmly integrated in ITER's time schedule: The neutral-particle heating will have to function from the very first day of scientific operation of ITER.

Explore further: Diamagnetic levitation of pyrolitic graphite over a single magnet achieved

add to favorites email to friend print save as pdf

Related Stories

Wanted: the right wall material for ITER

Oct 12, 2007

ASDEX Upgrade at Max Planck Institute of Plasma Physics (IPP) in Garching, Germany, recently became the world's first and only device allowing experiments with a wall completely clad with metal, viz. tungsten. ...

I-mode powers up on alcator C-mod tokamak

Nov 10, 2011

A key challenge in producing fusion energy is confining the plasma long enough for the ionized hydrogen to fuse and produce net power. Suppressing plasma turbulence is one approach to this, but the resulting ...

US ITER awards agreement for Tokamak Cooling Water System

Jan 19, 2010

The U.S. ITER Project Office at Oak Ridge National Laboratory has awarded a basic ordering agreement for design and fabrication of the Tokamak Cooling Water System (TCWS) - a major U.S. contribution to the ITER Project - ...

Nations Sign Nuclear Fusion Reactor Pact

Nov 21, 2006

Today, Ministers from the seven Parties of the international nuclear fusion project ITER (China, European Union, India, Japan, the Republic of Korea, the Russian Federation and the United States of America) ...

New jet results tick all the boxes for ITER

Oct 08, 2012

Latest results from the Joint European Torus (JET) fusion device are giving researchers increasing confidence in prospects for the next-generation ITER project, the international experiment that is expected ...

U.S. ITER Project Office Is Relocating to ORNL

Feb 01, 2006

The U.S. project office for ITER, a major international fusion experiment, is relocating from Princeton Plasma Physics Laboratory to Oak Ridge National Laboratory to optimize the roles of the two Department of Energy national lab ...

Recommended for you

Awakening the potential of plasma acceleration

Aug 27, 2014

Civil engineering has begun for the new Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) at CERN. This proof-of-principle experiment will harness the power of wakefields generated by proton ...

Magnetic memories on the right track

Aug 27, 2014

Computer hard drives store data by writing magnetic information onto their surfaces. In the future, magnetic effects may also be used to improve active memory in computers, potentially eliminating the need ...

When an exciton acts like a hole

Aug 27, 2014

(Phys.org) —When is an electron hole like a quasiparticle (QP)? More specifically, what happens when a single electron hole is doped into a two-dimensional quantum antiferromagnet? Quasiparticle phenomena ...

User comments : 0