New electrically-conductive polymer nanoparticles can generate heat to kill colorectal cancer cells

November 20, 2012

Researchers at Wake Forest Baptist Medical Center have modified electrically-conductive polymers, commonly used in solar energy applications, to develop revolutionary polymer nanoparticles (PNs) for a medical application. When the nanoparticles are exposed to infrared light, they generate heat that can be used to kill colorectal cancer cells.

The study was directed by Assistant Professor of , Nicole H. Levi-Polyachenko, Ph.D., and done in collaboration with colleagues at the Center for Nanotechnology and Molecular Materials at Wake Forest University. This study was recently published online, ahead of print, in the journal, Macromolecular Bioscience.

Levi-Polyachenko and her team discovered a novel formulation that gives the polymers two important capabilities for : the polymers can be made into nanoparticles that are easily dispersed in water and generate a lot of heat when exposed to .

Results of this study showed that when colorectal incubated with the PNs were exposed to five minutes of infrared light, the treatment killed up to 95 percent of cells. "The results of this study demonstrate how new medical advancements are being developed from materials science research," said Levi-Polyachenko.

The team made and showed that they could undergo repeated cycles of heating and cooling without affecting their heating ability. This offers advantages over , which can melt during photothermal treatments, leading to a loss of heating efficiency. This also allows for subsequent treatments to target cells that are resistant to heat-induced killing.

A challenge with other electrically-conductive polymers that have recently been explored for photothermal therapy is that these other polymers absorb across a wide range of infrared light. Christopher M. MacNeill, Ph.D., post-doctoral researcher at Wake Forest and first author on the paper, noted that, "we have specifically used electrically-conductive polymers designed to absorb a very narrow region of infrared light, and have also developed small, 50-65nm, nanoparticles in order to optimize both biological transport as well as heat transfer." For example, 50nm is about 2000 times smaller than a human hair.

In addition, the new PNs are organic and did not show any evidence of toxicity, alleviating concerns about the effect of nanoparticles that may potentially linger in the body.

"There is a lot more research that needs to be done so that these new nanoparticles can be used safely in patients," Levi-Polyachenko cautioned, "but the field of electrically- is broad and offers many opportunities to develop safe, organic nanoparticles for generating heat locally in a tissue. We are very enthusiastic about future medical applications using these new nanoparticles, including an alternative approach for treating colorectal cancer."

Explore further: In Brief: Gold nanoparticles might fight cancer

More information: DOI: 10.1002/mabi.201200241

Related Stories

Ink with tin nanoparticles could print future circuit boards

April 12, 2011

(PhysOrg.com) -- Almost all electronic devices contain printed circuit boards, which are patterned with an intricate copper design that guides electricity to make the devices functional. In a new study, researchers have taken ...

Study magnetizes carbon nanoparticles for cancer therapy

February 24, 2012

(PhysOrg.com) -- A team of University of Texas at Arlington researchers have developed a method that uses magnetic carbon nanoparticles to target and destroy cancer cells through laser therapy - a treatment they believe could ...

Using radio waves to bake tumors

April 6, 2012

(Phys.org) -- Nanothermal therapy – the use of nanoparticles to cook a tumor to death – is one of the many promising uses of nanotechnology to both improve the effectiveness of cancer therapy and reduce its side ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.