Researchers seek to improve drug delivery with hydrogels

November 2, 2012
Targeting drugs with hydrogels [research]
A smart hydrogel-based time bomb triggers drug release mediated by pH-jump reaction Credit: Science and Technology of Advanced Materials

Researchers in Japan have developed a technique which allows them to control and target drug delivery to specific sites of the body at specific times, thus reducing side effects and improving treatment dramatically. The results were published recently in the journal Science and Technology of Advanced Materials.

Better control over the delivery of drugs to specific sites in the body at specific times would reduce unwanted side effects and improve medical treatment dramatically. 'Smart' polymers are promising materials for controlling drug delivery, since they change their properties in response to specific stimuli. However, they usually require continuous stimulation to maintain these changes. Now, researchers led by Takao Aoyagi at the MANA, National Institute for Materials Science, Japan, have developed an approach that could allow more subtle control and timing of drug delivery.

The new technique uses hydrogels, which are a type of 'smart' polymer made of water-soluble long-. The team first showed that they could control the acidity inside a by loading it with a compound called o-NBA. This releases protons, which increases acidity, when irradiated with UV light. When o-NBA-loaded hydrogel was irradiated, acidity increased inside; if only part of the gel was irradiated, acidity throughout increased gradually as protons diffused.

Aoyagi and his colleagues then loaded hydrogel with o-NBA and L-DOPA, a precursor of the brain that is used in the treatment of Parkinson's disease. The change of acidity in the gel upon caused L-DOPA to be released because the acidity disrupted the interaction of L-DOPA with the molecules in the gel.

Irradiation with UV not only enhanced overall L-DOPA release from the hydrogel, but also caused an extra 'explosive' release five hours after irradiation. This allowed the drug release to be timed, as well as triggered, in a controlled way.

Being able to control the release of drugs from hydrogels by triggering a change in acidity could help to design programmable techniques that offer improved targeting of treatment.

Explore further: What causes motor complications of Parkinson's treatment?

More information: Prapatsorn Techawanitchai, Naokazu Idota, Koichiro Uto, Mitsuhiro Ebarab and Takao Aoyagi (2012) A smart hydrogel-based time bomb triggers drug release mediated by pH-jump reaction. Science and Technology of Advanced Materials Vol. 13 (2012) p. 064202. dx.doi.org/10.1088/1468-6996/13/6/064202

Related Stories

What causes motor complications of Parkinson's treatment?

January 29, 2009

People with Parkinson's disease commonly suffer a slowing or freezing of movement caused by the death of neurons that make dopamine, a key chemical that allows brain cells to send and receive messages essential to voluntary ...

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.