Discovery of anomalous softening phenomenon and shear bands suppression effect in metallic glass

Nov 15, 2012

A research team from Japan has discovered an anomalous softening effect in metallic glass, in which the hardness and elastic modulus of the material are reduced remarkably by applying giant shear strain to metallic glass under a high pressure of 5GPa. This research revealed that the shear zones generated in metallic glasses during room temperature deformation are suppressed accompanying this anomalous softening.

Metallic glasses are a type of amorphous metallic material and have excellent properties, such as high strength, high , soft magnetism, etc. in comparison with ordinary metals. Metallic glasses display these favorable properties because they do not have a like that of crystalline metallic materials, and therefore do not have the dislocations and associated with crystal structures. Utilizing these excellent properties, metallic glasses have already been applied to , golf clubs, projection materials for use in shot peening, etc. However, their range of applications had been limited, as metallic glasses lack ductility and are prone to localized deformation when deformed at room temperature.

Using the nanoindentation method, the team headed by Dr. Tsuchiya investigated the changes in the mechanical properties of a disk-shaped specimen of Zr50Cu40Al10 metallic glass when shear strain was applied by the high pressure torsion (HPT) method, in which giant torsional straining is applied under a high pressure of 5GPa at room temperature. As a result, the hardness and modulus of elasticity decreased as deformation increased, and after 50 revolutions of HPT straining, the hardness and elastic modulus of the specimen were markedly decreased to 22% and 30% of the values before straining, respectively. This is attributable to the phenomenon of "structural rejuvenation," in which the structure of the becomes more liquid-likeunder HPT.

Furthermore, when the indentation marks after nanoindentation were observed by scanning probe microscopy (SPM), numerous shear bands could be seen in the area around the indents before straining, but the number of shear bands decreased with increasing HPT straining, and no shear bands were observed after 50 revolution of HPT straining. This shows that localized deformation is suppressed by HPT straining, and the material undergoes a transition to a more homogeneous deformation mode. This discovery suggests the possibility of room temperature formingof metallic glasses, and is considered to enable development of applications to micro-to-nano systems, etc.

These results were published in Applied Physics Letters dated September 20, 2012.

Explore further: Global scientific team 'visualizes' a new crystallization process (w/ video)

More information: apl.aip.org/resource/1/applab/v101/i12/p121914_s1?bypassSSO=1

add to favorites email to friend print save as pdf

Related Stories

New glass tops steel in strength and toughness

Jan 10, 2011

(PhysOrg.com) -- Glass stronger and tougher than steel? A new type of damage-tolerant metallic glass, demonstrating a strength and toughness beyond that of any known material, has been developed and tested ...

Metallic Glass Yields Secrets Under Pressure

Mar 16, 2010

(PhysOrg.com) -- Metallic glasses are emerging as potentially useful materials at the frontier of materials science research. They combine the advantages and avoid many of the problems of normal metals and ...

Recommended for you

Novel technique opens door to better solar cells

Apr 14, 2014

A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to ...

Probing metal solidification nondestructively

Apr 14, 2014

(Phys.org) —Los Alamos researchers and collaborators have used nondestructive imaging techniques to study the solidification of metal alloy samples. The team used complementary methods of proton radiography ...

Glasses strong as steel: A fast way to find the best

Apr 13, 2014

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

User comments : 0

More news stories

Researchers see hospitalization records as additional tool

Comparing hospitalization records with data reported to local boards of health presents a more accurate way to monitor how well communities track disease outbreaks, according to a paper published April 16 in the journal PLOS ON ...

Ebola virus in Africa outbreak is a new strain

Scientists say that the Ebola (ee-BOH'-lah) virus that has killed scores of people this year in Guinea (GIH'-nee) is a new strain. That means it did not spread there from outbreaks in some other African nations.