Diamond-like coating improves electron microscope images

Nov 30, 2012 by Mike Ross
Adding a single layer of diamondoid crystals to a material's surface greatly improves the resolution of photoelectron emission microscope images of its magnetic structure.

(Phys.org)—Coating the surface of a material with a single layer of diamond-like crystals greatly improves images of it taken with an electron microscope, according to a study led by scientists at SLAC National Accelerator Laboratory and Stanford University.

In results published last month in Applied Physics Letters, the group reported a nearly three-fold improvement in the quality of photoelectron emission microscope (PEEM) images when they used the coating. PEEM images reveal important aspects of the sample's , and .

The crystals, called diamondoids, are made of 10 or more arranged in the same way as a diamond. Known since the 1930s to exist in many oil and – where they are considered a nuisance – diamondoids are relatively cheap, readily available and the target of research by Stanford scientists who are exploring their properties and potential applications.

PEEM involves shining intense ultraviolet or X-ray light onto a sample and recording electrons emitted from just below its surface, which are used to form an image. However, the high X-ray energies often used in these studies trigger emissions of electrons with a wide range of energies – and this limits the resolution of the image. Although the image can be sharpened with complex million-dollar electronics, the Stanford/SLAC team thought a simple coating of diamondoids might work just as well – and it did.

"Earlier lab tests had shown that diamondoids should be excellent electron emitters," said Nicholas Melosh, an associate professor of at Stanford, and a researcher with the Stanford Institute for Materials and Energy Sciences (SIMES), a joint SLAC/Stanford institute. "This is the first published paper demonstrating that diamondoids can directly improve PEEM imaging."

The tests were conducted at Lawrence Berkeley National Laboratory's Advanced Light Source. Adding a single layer of diamondoid crystals to the surface of a cobalt-platinum magnetic alloy improved the resolution of the microscope image – the size of the smallest perceivable detail – from 25 nanometers, or billionths of a meter, to 10 nanometers. The diamondoids capture electrons emitted from the sample and re-emit them within a very narrow energy range, which can then be focused precisely.

"Our study exemplifies how the unique properties of a nanoparticle can help solve a problem not suited to conventional engineering solutions," said SLAC microscopist Hendrik Ohldag. "With 10-nanometer resolution, we can start to identify and analyze the structures of domain walls – the critical transition regions between magnetic orientations in ferromagnetic or ferroelectric materials. It also enables us to significantly reduce the exposure time without sacrificing resolution, which is important when looking at organic materials, such as polymers, which degrade quickly in the X-ray beam."

Future research aims to make the diamondoid coating more durable and find ways to use it on more materials, including non-metals. Ultimately, diamondoids could also improve the resolution of scanning electron microscopes, electron-beam writing and nanolithography tools. (However, recent price declines in flat-panel displays have reduced the likelihood that diamondoids would be used in those products.)

Explore further: X-rays probe LHC for cause of short circuit

More information: apl.aip.org/resource/1/applab/v101/i16/p163101_s1

add to favorites email to friend print save as pdf

Related Stories

New single-shot X-ray technique makes magnetic image

Aug 31, 2012

(Phys.org)—Scientists working at SLAC's Linac Coherent Light Source have captured the first single-shot X-ray microscope image of a magnetic nanostructure and shown that it can be done without damaging ...

Helium raises resolution of whole cell imaging

Oct 03, 2011

The ability to obtain an accurate three-dimensional image of an intact cell is critical for unraveling the mysteries of cellular structure and function. However, for many years, tiny structures buried deep inside cells have ...

Recommended for you

New insights found in black hole collisions

19 hours ago

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

19 hours ago

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

22 hours ago

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

johanfprins
1 / 5 (2) Dec 01, 2012
This is so obvious that it does not justify a full publication.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.