Beating the dark side of quantum computing

Nov 16, 2012

A future quantum computer will be able to carry out calculations billions of times faster than even today's most powerful machines by exploit the fact that the tiniest particles, molecules, atoms and subatomic particles can exist in more than one state simultaneously. Scientists and engineers are looking forward to working with such high-power machines but so too are cyber-criminals who will be able to exploit this power in cracking passwords and decrypting secret messages much faster than they can now.

Now, Richard Overill of the Department of Informatics at King's College London is working in the field of digital forensics to develop the necessary tools to pre-empt the as becomes reality. Writing in the Int. J. Information Technology, Communications and Convergence, Overill explains that while quantum computing is in its infancy, as with earlier technological leaps once the nuts and bolts are in place, it will be adopted rapidly by and others eager to utilise its enormous potential.

The technologies that will underpin quantum computing will be quite esoteric to the non-specialist and include laser-excited atomic ion traps using beryllium or calcium atoms, bulk liquid-phase and solid-phase , as well superconducting solid-state circuits operating at liquid helium temperatures. Of course, the semiconductor, silicon chip technology underpinning current supercomputers is perhaps just as esoteric although seems more familiar to us now.

Nevertheless, it is not the complexities of the technology that is important but what it will allow computer users to do such as solving logistics problems by overlaying all possible solutions and allowing to find the optimal route, for instance. Or creating that could never be cracked by a conventional computer. And, as Overill warns, providing those intent on cracking passwords and such to apply computational brute force with immeasurable efficiency. Such power might be wielded by crime fighters and criminals alike.

"At first sight, therefore, it would appear that with the advent of practical quantum computers the task of cyber-law enforcement will become significantly more challenging," says Overill. However, as has always been the case with crime and crime fighting, forensics constantly plays catch up with the technology exploited by criminals and so too with quantum computers. Overill provides a roadmap for how research into digital forensics must progress if crime fighters and investigators are to keep up with the pace of change.

Currently there is no answer to beating quantum crime. "There are ultimate physical limitations on what forensic information can be recovered from a quantum computation," says Overill. Forensic has always had such limitations but investigators are adept at obtaining clues regardless. "So, our digital quantum forensics mission has to focus on learning how to get 'more from less', by squeezing every last drop of information from the traces that can be recovered, and then devising novel techniques to interpret these traces as richly as possible."

Explore further: Comfortable climate indoors with porous glass

More information: Overill, R. Digital quantum forensics: future challenges and prospects. Int. J. Information Technology, Communications and Convergence, 2012, 2, 205-211.

add to favorites email to friend print save as pdf

Related Stories

At Yale, quantum computing is a (qu)bit closer to reality

Feb 15, 2012

(PhysOrg.com) -- Physicists at Yale University have taken another significant step in the development of quantum computing, a new frontier in computing that promises exponentially faster information processing ...

Quantum computing with recycled particles

Oct 23, 2012

A research team from the University of Bristol's Centre for Quantum Photonics (CQP) have brought the reality of a quantum computer one step closer by experimentally demonstrating a technique for significantly reducing the ...

Quantum Computer Science on the Internet

Jul 31, 2004

A simulated quantum computer went online on the Internet last month. With the ability to control 31 quantum bits, it is the most powerful of its type in the world. Software engineers can use it to test algorithms that might o ...

New supercomputer to be unveiled

Feb 12, 2007

A Canadian firm is claiming to have taken a quantum leap in technology by producing a computer that can perform 64,000 calculations at once.

Recommended for you

Comfortable climate indoors with porous glass

17 hours ago

Proper humidity and temperature play a key role in indoor climate. In the future, establishing a comfortable indoor environment may rely on porous glass incorporated into plaster, as this regulates moisture ...

Crash-testing rivets

18 hours ago

Rivets have to reliably hold the chassis of an automobile together – even if there is a crash. Previously, it was difficult to predict with great precision how much load they could tolerate. A more advanced ...

Customized surface inspection

18 hours ago

The quality control of component surfaces is a complex undertaking. Researchers have engineered a high-precision modular inspection system that can be adapted on a customer-specific basis and integrated into ...

Sensors that improve rail transport safety

18 hours ago

A new kind of human-machine communication is to make it possible to detect damage to rail vehicles before it's too late and service trains only when they need it – all thanks to a cloud-supported, wireless ...

Tiny UAVs and hummingbirds are put to test

Jul 30, 2014

Hummingbirds in nature exhibit expert engineering skills, the only birds capable of sustained hovering. A team from the US, British Columbia, and the Netherlands have completed tests to learn more about the ...

User comments : 0