Cellular 'tug of war' creates the foundation for the embryonic central nervous system

Nov 09, 2012
In a normal chick embryo (left), the protein Celsr1 helps to induce proper formation of the neural tube. In chick embryos lacking this protein (right), the neural plate fails to curve so cannot close properly.

In developing vertebrates, the brain and spinal cord originate from an embryonic structure known as the neural tube. This initially forms as a flat 'neural plate', which subsequently folds around and closes up to form a tubular structure. By performing an extensive series of experiments in developing chick embryos, Masatoshi Takeichi and his team at the RIKEN Center for Developmental Biology, Kobe, has now revealed valuable insights into the mechanism underlying the closure process.

The neural plate is formed from epithelial cells, which feature clearly defined 'top' (apical) and 'bottom' (basal) surfaces. At the apical surface, the cells are connected by structures called adherens junctions, which are in turn connected to a network of actomyosin . "It is known that the contraction of these actomyosin fibers causes bending of these epithelial sheets in the apical direction through the constriction of their apical surfaces," says Takeichi. "We became interested in learning how this mechanism contributes to the formation of the ."

The initial bending of the neural plate is most prominent near the midpoint of what will ultimately become the brain and spinal cord. Within this embryonic region, Takeichi and colleagues observed that neural plate cells tended to form polarized 'chains' of actomyosin fibers that extend across multiple cells, perpendicular to the head–tail axis of the embryo. As closure begins, the cells undergo extensive in a process called 'convergent extension'. Cells of the neural plate squeeze inward, pushing adjacent cells forward and backward and resulting in lengthwise extension of the developing neural tube.

The researchers determined that a protein called Celsr1 helps direct this convergent extension. They subsequently identified a network of proteins that act downstream of Celsr1. Together, these proteins form a signaling cascade that induces the of the long actomyosin fibers that tether the neural plate epithelial cells together. As the fibers contract, these cells' apical surfaces become pinched toward the midline of the neural plate, and this steady narrowing of the apical surface ultimately results in the curvature of plate.

These findings explain a critical step in the development of the nervous system, and could help illuminate the roots of conditions arising from faulty neural tube development, like spina bifida. "Mice in which these genes are mutated show neural tube closure defects," says Takeichi, "and irregularities in any of the genes or molecules identified here could cause birth defects [in humans]."

Explore further: Fighting bacteria—with viruses

More information: Nishimura, T., Honda, H. & Takeichi, M. Planar cell polarity links axes of spatial dynamics in neural-tube closure. Cell 149, 1084–1097 (2012). dx.doi.org/10.1016/j.cell.2012.04.021

add to favorites email to friend print save as pdf

Related Stories

How cells know when to tighten the belt

Oct 21, 2011

The epithelial cells that line the surface of tissues form a tightly sealed barrier, with individual cells joined together by structures called apical junctional complexes (AJCs). However, embryonic epithelium ...

Scientists find neural stem cell regulator

Apr 16, 2012

Researchers at the University of Colorado School of Medicine have found that lack of a specific gene interrupts neural tube closure, a condition that can cause death or paralysis.

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0