Some cells don't know when to stop

Nov 19, 2012

Certain mutated cells keep trying to replicate their DNA—with disastrous results—even after medications rob them of the raw materials to do so, according to new research from USC.

New imaging techniques allowed scientists to see for the first time that while shut down the DNA replication process of most , so-called "checkpoint " just keep chugging along, unwinding the DNA and creating damaged that can result in the kind of abnormalities seen in cancer .

"Older methods suggested that these checkpoint mutants stopped replicating and that the replication machinery simply fell apart to cause ," said Susan Forsburg, professor of at the USC Dornsife College of Letters, Arts and Sciences. "Our new technique suggests that replication processes continue and actively contribute to the damage."

Forsburg is the corresponding author on a paper about the discovery that was published online in Molecular & Cellular Biology in October. She collaborated with lead author Sarah Sabatinos, a postdoctoral research associate at USC, and Marc Green, a research technician.

This video is not supported by your browser at this time.
A time-lapse video of cells, imaged to display a single strand of DNA (light blue) and DNA breaks (yellow) during drug treatment

The team used a common chemotherapy drug to put stress on fission yeast cells while they were going through the DNA replication process. The drug starves cells for nucleotides, which are the molecules that cells use to build DNA strands.

Previous studies showed that normal cells recognize the loss of nucleotides and stop trying to replicate their DNA—similar to how a driver who runs low on gas stops before he runs the engine dry.

What the researchers found is that the checkpoint mutants ignore this signal. Using the metaphor above, the driver of the car can't take his foot off of the accelerator and keeps going until his engine sputters to a stop. While this won't necessarily damage a car engine, it's catastrophic for DNA.

These mutant cells keep trying to replicate their DNA, unwinding the strands, until the DNA strands reach a "collapse point" where they break—arguably the worst kind of damage that can be done to a cell.

"We predict that this is a source of increased cancer risk in human cells that harbor checkpoint mutations," Sabatinos said. "Replication-fork instability or collapse may occur at a low frequency in these mutated cells without drug treatment, leading to more frequent DNA changes down the road."

The next step will be to determine what happens to the small fraction of mutant cells that survive this treatment.

"By bringing to bear a sophisticated combination of genetic tools, drug treatment and state-of-the-art imaging, Susan Forsburg and her co-workers have elicited a fresh perspective on a long-standing problem," said Michael Reddy, who oversees DNA replication grants at the National Institutes of Health's National Institute of General Medical Sciences, which funded the work.

"Their fundamentally revised scenario of the dynamics of fork collapse is likely to lead to invaluable insights as to how checkpoint-defective human cancer cells preserve their DNA, thereby resisting ," he said.

Explore further: Researchers successfully clone adult human stem cells

Related Stories

Researchers demonstrate why DNA breaks down in cancer cells

May 03, 2011

Damage to normal DNA is a hallmark of cancer cells. Although it had previously been known that damage to normal cells is caused by stress to their DNA replication when cancerous cells invade, the molecular basis for this ...

Scripps research team unravels new cellular repair mechanism

Aug 06, 2008

A Scripps Research team has unraveled a new biochemical pathway that triggers a critical repair response to correct errors in the DNA replication process that could otherwise lead to harmful or fatal mutations in cells. Though ...

Scientists identify molecular basis for DNA breakage

Jul 19, 2011

Scientists from the Hebrew University have identified the molecular basis for DNA breakage, a hallmark of cancer cells. The findings of this research have just been published in the journal Molecular Cell.

Recommended for you

Researchers successfully clone adult human stem cells

14 hours ago

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

17 hours ago

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

For resetting circadian rhythms, neural cooperation is key

Apr 17, 2014

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

User comments : 0

More news stories

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...