Some cells don't know when to stop

Nov 19, 2012

Certain mutated cells keep trying to replicate their DNA—with disastrous results—even after medications rob them of the raw materials to do so, according to new research from USC.

New imaging techniques allowed scientists to see for the first time that while shut down the DNA replication process of most , so-called "checkpoint " just keep chugging along, unwinding the DNA and creating damaged that can result in the kind of abnormalities seen in cancer .

"Older methods suggested that these checkpoint mutants stopped replicating and that the replication machinery simply fell apart to cause ," said Susan Forsburg, professor of at the USC Dornsife College of Letters, Arts and Sciences. "Our new technique suggests that replication processes continue and actively contribute to the damage."

Forsburg is the corresponding author on a paper about the discovery that was published online in Molecular & Cellular Biology in October. She collaborated with lead author Sarah Sabatinos, a postdoctoral research associate at USC, and Marc Green, a research technician.

This video is not supported by your browser at this time.
A time-lapse video of cells, imaged to display a single strand of DNA (light blue) and DNA breaks (yellow) during drug treatment

The team used a common chemotherapy drug to put stress on fission yeast cells while they were going through the DNA replication process. The drug starves cells for nucleotides, which are the molecules that cells use to build DNA strands.

Previous studies showed that normal cells recognize the loss of nucleotides and stop trying to replicate their DNA—similar to how a driver who runs low on gas stops before he runs the engine dry.

What the researchers found is that the checkpoint mutants ignore this signal. Using the metaphor above, the driver of the car can't take his foot off of the accelerator and keeps going until his engine sputters to a stop. While this won't necessarily damage a car engine, it's catastrophic for DNA.

These mutant cells keep trying to replicate their DNA, unwinding the strands, until the DNA strands reach a "collapse point" where they break—arguably the worst kind of damage that can be done to a cell.

"We predict that this is a source of increased cancer risk in human cells that harbor checkpoint mutations," Sabatinos said. "Replication-fork instability or collapse may occur at a low frequency in these mutated cells without drug treatment, leading to more frequent DNA changes down the road."

The next step will be to determine what happens to the small fraction of mutant cells that survive this treatment.

"By bringing to bear a sophisticated combination of genetic tools, drug treatment and state-of-the-art imaging, Susan Forsburg and her co-workers have elicited a fresh perspective on a long-standing problem," said Michael Reddy, who oversees DNA replication grants at the National Institutes of Health's National Institute of General Medical Sciences, which funded the work.

"Their fundamentally revised scenario of the dynamics of fork collapse is likely to lead to invaluable insights as to how checkpoint-defective human cancer cells preserve their DNA, thereby resisting ," he said.

Explore further: Fighting bacteria—with viruses

Related Stories

Researchers demonstrate why DNA breaks down in cancer cells

May 03, 2011

Damage to normal DNA is a hallmark of cancer cells. Although it had previously been known that damage to normal cells is caused by stress to their DNA replication when cancerous cells invade, the molecular basis for this ...

Scripps research team unravels new cellular repair mechanism

Aug 06, 2008

A Scripps Research team has unraveled a new biochemical pathway that triggers a critical repair response to correct errors in the DNA replication process that could otherwise lead to harmful or fatal mutations in cells. Though ...

Scientists identify molecular basis for DNA breakage

Jul 19, 2011

Scientists from the Hebrew University have identified the molecular basis for DNA breakage, a hallmark of cancer cells. The findings of this research have just been published in the journal Molecular Cell.

Recommended for you

Fighting bacteria—with viruses

2 hours ago

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

2 hours ago

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0