Using computational biology for the annotation of proteins

Nov 26, 2012
Image illustrating annotating proteins. Credit: UC3M

Research carried out at Universidad Carlos III of Madrid in collaboration with the Centro Nacional de Investigaciones Oncologicas employed computational techniques to improve the characterization of proteins. The system they developed has allowed them to predict, for example, the relationship between two human proteins and telomeres, which led to their possible implication in cellular aging and the development of cancer; this awaits experimental verification.

Proteins are molecules that are formed by chains of and they play a fundamental role in all of life, given that they contain the coded information in genes; they, therefore, carry out numerous functions in an organism: immunological (antibodies), structural (they constitute the majority of cellular material), bioregulating (they form part of enzymes) and a long list of etceteras. In short, they regulate thousands of process that take place within all organisms, including inside the , and they frequently do so by means of relationships they establish with other cells. "Analyzing and using this network of interactions is a very interesting task due to the large number of associations that exist and to the multiple forms in which one can influence the function of others," explains Professor Beatriz García, of UC3M's Computer Science department. "In such a complex biological scenario, determining the functional associations through experiments is very costly, so we have tried to apply to predict these functions and so orient experimentation," she points out. Thus, the idea is to use techniques from the field of , specifically from the area of Machine Learning, to obtain useful results for Biology, as part of an emerging interdisciplinary field known as Biocomputing or .

In this context, this line of research goes further in the annotation of the function of proteins, that is, in the determination of which protein or which group of proteins performs which task within an organism. In short, these scientists have dealt with two specific problems: the prediction of functional associations between pairs of proteins in the bacteria Escherichia coli and the extension of biological pathways in humans. In addition, they offer conclusions regarding the interpretation of those predictions, which may help explain the function of the cellular processes that were studied. "In particular," states Beatriz García, "the predictions obtained regarding two human proteins stand out (E3 SUMO-protein ligase y E3 ubiquitin-protein ligase DTX1); these were previously related to the controlled degradation of certain proteins, and we can now propose a new function related to the stabilization of and, therefore, their possible implication in and the development of cancer, which will require ."

This video is not supported by your browser at this time.
A video explaining the use of computational biology for the annotation of proteins. Credit: UC3M

For this study, part of which was recently published in the journal PLOS ONE, the researcher has received the award for the best doctoral dissertation in her field (Experimental Sciences and Technology) from the Real Academia de Doctores de España (Spanish Royal Academy of Doctors). The implications that this work holds for the scientific community are already being felt. In fact, the results of the first problem that the project analyzes have already been integrated into the predictions server EcID (E.coli Interaction Database) and they offer a reliability value for the predictions that improves the system's performance when finding functional associations among the proteins that appear in this database. Moreover, the second biological problem dealt with in the study opens a new area of research in Biocomputing, by extending already existing pathways. "The procedure it presents complements the only previously existing publication in the field, extending the pathways with many more proteins and exploring a greater surface of the network of interactions," comments the researcher. In addition, it could be applied to many more problems of functional annotation in Biology and other fields in which there is relevant information with multiple relationships.

In any case, much work remains to be done in the area of Biocomputation. "There are still so many unresolved biological problems that need computational solutions," assures Beatriz García, who highlights the relevance of this field, which is growing with the advances in new technologies; yet many computational challenges remain, such as the analysis of the new generation of sequencing. "This is an area that needs more trained professionals who can integrate Biology and Computer Science, in order to improve our knowledge of our organism at the molecular level and, finally, to facilitate the treatment of diseases," she concludes.

Explore further: Model uncovers malaria parasite causes red blood cell changes

More information: Inference of Functional Relations in Predicted Protein Networks with a Machine Learning Approach, Beatriz García-Jiménez, David Juan, Iakes Ezkurdia, Eduardo Andres-León, Alfonso Valencia, PLOS ONE 5(4): e9969. PLOS ONE 2010; doi: 10.1371/journal.pone.0009969

Related Stories

Researchers use new approach to predict protein function

Jul 11, 2007

In a paper published online this month in the journal Nature Chemical Biology, researchers report that they have developed a way to determine the function of some of the hundreds of thousands of proteins for wh ...

Casting the molecular net

Jun 14, 2007

Scientists at the Samuel Lunenfeld Research Institute of Mount Sinai Hospital (Canada), European Molecular Biology Laboratory (Germany), and Massachusetts Institute of Technology (USA) have created a new computational method ...

Model aids understanding of protein networks

Jun 25, 2007

An international team of researchers, including several from MIT, has developed a computational model that helps identify relationships between proteins and the enzymes that regulate them.

Method identifies mutations that drive genetic diseases

Jan 19, 2012

(PhysOrg.com) -- For the first time, a new computational method allows researchers to identify which specific molecular mechanisms are altered by genetic mutations in proteins that lead to disease. And they ...

Recommended for you

A CRISPR antiviral tool

2 hours ago

Emory scientists have adapted an antiviral enzyme from bacteria called Cas9 into an instrument for inhibiting hepatitis C virus in human cells.

Chromosome-folding theory shows promise

3 hours ago

Human chromosomes are much bigger and more complex than proteins, but like proteins, they appear to fold and unfold in an orderly process as they carry out their functions in cells.

New 3-D method improves the study of proteins

Apr 27, 2015

Researchers have developed a new computational method called AGGRESCAN3D which will allow studying the 3D structure of folded globular proteins and substantially improve the prediction of any propensity for ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.