Bacteria yield clues about why proteins go bad in ALS and Alzheimer's

Nov 02, 2012

(Phys.org)—Scientists are unsure why proteins form improperly and cluster together in bunches, a hallmark of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer's and Mad Cow Disease. In the Nov. 1 issue of the journal Molecular Cell, Yale scientists shed light on protein aggregate formation by studying the process in bacteria.

"The question we are all asking is what happens when protein synthesis goes wrong?" said Jesse Rinehart, assistant professor of cellular and molecular physiology at Yale's West Campus and co-senior author of the paper.

Proteins are created from instructions encoded in DNA and assembled in ribosomes within the cells. However, sometimes they are not assembled correctly, and these misfolded proteins tend to aggregate, a process typified by the plaques that form in the brains of Alzheimer's patients.

The Yale team—led by Rinehart and Dieter Söll, Sterling Professor of and Biochemistry and professor of chemistry—showed that the antibiotic streptomycin can trigger protein aggregations in the bacterium E. coli. Using large-scale proteomics and genetic screens, they analyzed the aggregates and searched for that make E. coli cells resistant to antibiotics and other threats. The researchers discovered how one of these proteins protecting the bacteria from also suppressed the aggregation of proteins triggered by streptomycin.

"The properties of these are still mysterious, but here we have a glimpse of how they form and how cells escape from these aggregates in bacteria," Söll said.

The study not only provides insight into how these protein aggregates can form, but illustrates how bacteria defend themselves against toxic threats. Such information could help scientists develop more effective antibiotics, Rinehart said.

Explore further: Herpes virus hijackers

Related Stories

Genetic code used to engineer a living protein

Aug 25, 2011

Yale University researchers have successfully re-engineered the protein-making machinery in bacteria, a technical tour de force that promises to revolutionize the study and treatment of a variety of diseases.

Cellular stress can induce yeast to promote prion formation

Jul 23, 2011

It's a chicken and egg question. Where do the infectious protein particles called prions come from? Essentially clumps of misfolded proteins, prions cause neurodegenerative disorders, such as mad cow/Creutzfeld-Jakob disease, ...

Neurodegeneration 'clumping proteins' common in aging process

Aug 10, 2010

Many proteins that form insoluble clumps in the brains of people with Alzheimer's and other neurodegenerative diseases are also found in healthy individuals and clump together as a normal part of aging. According to a surprising ...

New discoveries in cell aging

Jan 23, 2012

A group of researchers led by the Institute of Biotechnology and Biomedicine (IBB) and Universitat Autònoma de Barcelona (UAB) have achieved to quantify with precision the effect of protein aggregation on cell aging ...

Recommended for you

Herpes virus hijackers

May 22, 2015

The virus responsible for the common cold sore hijacks the machinery within our cells, causing them to break down and help shield the virus from our immune system, researchers from the University of Cambridge ...

Bacteria cooperate to repair damaged siblings

May 21, 2015

A University of Wyoming faculty member led a research team that discovered a certain type of soil bacteria can use their social behavior of outer membrane exchange (OME) to repair damaged cells and improve ...

New antibody insecticide targets malaria mosquito

May 20, 2015

Malaria is a cruel and disabling disease that targets victims of all ages. Even now, it is estimated to kill one child every minute. Recent progress in halting the spread of the disease has hinged on the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.