Bacteria yield clues about why proteins go bad in ALS and Alzheimer's

Nov 02, 2012

(Phys.org)—Scientists are unsure why proteins form improperly and cluster together in bunches, a hallmark of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer's and Mad Cow Disease. In the Nov. 1 issue of the journal Molecular Cell, Yale scientists shed light on protein aggregate formation by studying the process in bacteria.

"The question we are all asking is what happens when protein synthesis goes wrong?" said Jesse Rinehart, assistant professor of cellular and molecular physiology at Yale's West Campus and co-senior author of the paper.

Proteins are created from instructions encoded in DNA and assembled in ribosomes within the cells. However, sometimes they are not assembled correctly, and these misfolded proteins tend to aggregate, a process typified by the plaques that form in the brains of Alzheimer's patients.

The Yale team—led by Rinehart and Dieter Söll, Sterling Professor of and Biochemistry and professor of chemistry—showed that the antibiotic streptomycin can trigger protein aggregations in the bacterium E. coli. Using large-scale proteomics and genetic screens, they analyzed the aggregates and searched for that make E. coli cells resistant to antibiotics and other threats. The researchers discovered how one of these proteins protecting the bacteria from also suppressed the aggregation of proteins triggered by streptomycin.

"The properties of these are still mysterious, but here we have a glimpse of how they form and how cells escape from these aggregates in bacteria," Söll said.

The study not only provides insight into how these protein aggregates can form, but illustrates how bacteria defend themselves against toxic threats. Such information could help scientists develop more effective antibiotics, Rinehart said.

Explore further: Researchers discover new strategy germs use to invade cells

Related Stories

Genetic code used to engineer a living protein

Aug 25, 2011

Yale University researchers have successfully re-engineered the protein-making machinery in bacteria, a technical tour de force that promises to revolutionize the study and treatment of a variety of diseases.

Cellular stress can induce yeast to promote prion formation

Jul 23, 2011

It's a chicken and egg question. Where do the infectious protein particles called prions come from? Essentially clumps of misfolded proteins, prions cause neurodegenerative disorders, such as mad cow/Creutzfeld-Jakob disease, ...

Neurodegeneration 'clumping proteins' common in aging process

Aug 10, 2010

Many proteins that form insoluble clumps in the brains of people with Alzheimer's and other neurodegenerative diseases are also found in healthy individuals and clump together as a normal part of aging. According to a surprising ...

New discoveries in cell aging

Jan 23, 2012

A group of researchers led by the Institute of Biotechnology and Biomedicine (IBB) and Universitat Autònoma de Barcelona (UAB) have achieved to quantify with precision the effect of protein aggregation on cell aging ...

Recommended for you

Researchers discover new strategy germs use to invade cells

16 hours ago

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

17 hours ago

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

User comments : 0