How bacteria can survive in acidic, metal rich environments

Nov 19, 2012 by Anna-Lena Lindskog

Acid-loving bacteria thrive in sour, acidic places and can help to dissolve metal. Therefore they are often used for industrial metal extraction. In her doctoral thesis "Growth and Survival of Acidithiobacilli in Acidic, Metal Rich Environments" Stefanie Mangold, Umeå University, has explored basic mechanisms of these very special bacteria.

"Acidithibacilli are very powerful, for example one forth of the worlds copper is extracted with these . But they can also cause environmental problems, for example with abandoned mine sites. That's why basic research into these bacteria is important. If we understand the processes we may also at some stage control pollution problems better," says Stefanie Mangold, the Institution of , Umeå University.

The special property of acid-loving bacteria is that they can live in extremely acidic places highly polluted with metals, where no other organisms can survive. They also have a natural capacity to solubilize metal ores and are often used for industrial metal extraction.

To gain insight into how these microorganisms can thrive in such an unfriendly environment, Stefanie Mangold has investigated metabolism, metal resistance and pH with focus on two model organisms, Acidithiobacillus caldus (At. caldus) and Acidithiobacillus ferrooxidans (At. ferrooxidans).

Pathways of how At. caldus can break down sulfur compounds to gain energy were suggested. This might eventually help to optimize industrial metal extraction as the degradition of is an important step in the breakdown of metal ores.

Furthermore, it was studied how At. ferrooxidans can grow without using oxygen, which is of interest for metal extraction in large piles of metal ore where anaerobic zones can exist. Finally the knowledge of how these microbes can survive stress due to metals and acid might also help in fine tuning .

Explore further: Fighting bacteria—with viruses

More information: urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-60439

add to favorites email to friend print save as pdf

Related Stories

Sulphur-eating bacteria limit acid run-off and CO2

Jan 15, 2010

(PhysOrg.com) -- Acid Mine Drainage (AMD) is caused when sulphur in mine tailings reacts with water and oxygen in the environment to produce sulphuric acid. It is a major environmental issue, with AMD a concern ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0