How bacteria can survive in acidic, metal rich environments

Nov 19, 2012 by Anna-Lena Lindskog

Acid-loving bacteria thrive in sour, acidic places and can help to dissolve metal. Therefore they are often used for industrial metal extraction. In her doctoral thesis "Growth and Survival of Acidithiobacilli in Acidic, Metal Rich Environments" Stefanie Mangold, Umeå University, has explored basic mechanisms of these very special bacteria.

"Acidithibacilli are very powerful, for example one forth of the worlds copper is extracted with these . But they can also cause environmental problems, for example with abandoned mine sites. That's why basic research into these bacteria is important. If we understand the processes we may also at some stage control pollution problems better," says Stefanie Mangold, the Institution of , Umeå University.

The special property of acid-loving bacteria is that they can live in extremely acidic places highly polluted with metals, where no other organisms can survive. They also have a natural capacity to solubilize metal ores and are often used for industrial metal extraction.

To gain insight into how these microorganisms can thrive in such an unfriendly environment, Stefanie Mangold has investigated metabolism, metal resistance and pH with focus on two model organisms, Acidithiobacillus caldus (At. caldus) and Acidithiobacillus ferrooxidans (At. ferrooxidans).

Pathways of how At. caldus can break down sulfur compounds to gain energy were suggested. This might eventually help to optimize industrial metal extraction as the degradition of is an important step in the breakdown of metal ores.

Furthermore, it was studied how At. ferrooxidans can grow without using oxygen, which is of interest for metal extraction in large piles of metal ore where anaerobic zones can exist. Finally the knowledge of how these microbes can survive stress due to metals and acid might also help in fine tuning .

Explore further: Two-armed control of ATR, a master regulator of the DNA damage checkpoint

More information: urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-60439

add to favorites email to friend print save as pdf

Related Stories

Sulphur-eating bacteria limit acid run-off and CO2

Jan 15, 2010

(PhysOrg.com) -- Acid Mine Drainage (AMD) is caused when sulphur in mine tailings reacts with water and oxygen in the environment to produce sulphuric acid. It is a major environmental issue, with AMD a concern ...

Recommended for you

Japanese scientist resigns over stem cell scandal

Dec 19, 2014

A researcher embroiled in a fabrication scandal that has rocked Japan's scientific establishment said Friday she would resign after failing to reproduce results of what was once billed as a ground-breaking study on ...

'Hairclip' protein mechanism explained

Dec 18, 2014

Research led by the Teichmann group on the Wellcome Genome Campus has identified a fundamental mechanism for controlling protein function. Published in the journal Science, the discovery has wide-ranging implications for bi ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.