New bacteria, potential carbon cycling, bioremediation roles reported

Nov 07, 2012
EMSL contributed to research published in Science that expands what is known about bacteria capable of performing bioremediation from handfuls of genes to 10s of complete or nearly complete genomes.

(Phys.org)—Proteomics experts and resources at EMSL contributed to a study published in Science centered on the discovery of new bacteria and the metabolic roles, such as carbon cycling, of bacteria in the environment. The bacteria studied were part of microbial communities collected directly from an acetate-amended subsurface aquifer as part of the U.S. Department of Energy's Integrated Field Research Challenge (IFRC).

The aquifer, located in Rifle, Colorado, is in an area once used to process uranium and now used by the DOE to study . Treating such metal-contaminated environments with acetate, which is much like diluted vinegar, stimulates the growth of naturally occurring bacteria. Many of these bacteria are able to derive energy from metals, in the process turning dangerous, soluble metals into safer, more manageable insoluble metals. The research team sequenced nearly 150,000 genes from the IFRC samples and was able to assign these genes to, or reconstruct the genomes in part or in whole for, 87 different bacterial species.

To put these numbers in perspective, only 33 protein-coding genes were known for a group of bacteria in the samples named OD1—the research team expanded on that, recovering 24,000 for OD1 bacteria. Impressively, 49 of the 87 genomes belong to species that had never before been characterized at the genome level. Based on the genomic analyses, some of these organisms fell into a new phylogenetic classification named PER or Peregrine, referring to their wandering behavior relative to the existing . Proteomics tools at EMSL provided valuable data about the metabolic activity of the bacteria in their native complex subsurface environment, showing that they may play roles in carbon cycling, sulfur cycling, and .

The team's groundbreaking results could lead to improved methods to stimulate bacteria to uptake atmospheric carbon, thus reducing , and to better apply microbes to remediate toxic metal-contaminated environments.

Explore further: The malaria pathogen's cellular skeleton under a super-microscope

More information: Wrighton KC, BC Thomas, I Sharon, CS Miller, CJ Castelle, NC VerBerkmoes, MJ Wilkins, RL Hettich, MS Lipton, KH Williams, PE Long, and JF Banfield. 2012. "Fermentation, Hydrogen and Sulfur Metabolism in Multiple Uncultivated Bacterial Phyla." Science 337(6102):1661-1665. DOI: 10.1126/science.1224041

add to favorites email to friend print save as pdf

Related Stories

Bacteria to the rescue

Jan 24, 2012

At several U.S. Department of Energy (DOE) sites, uranium mining, milling, and processing have led to groundwater contamination that persists above drinking water standards—in spite of natural flushing ...

Recommended for you

For resetting circadian rhythms, neural cooperation is key

5 hours ago

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

Rapid and accurate mRNA detection in plant tissues

6 hours ago

Gene expression is the process whereby the genetic information of DNA is used to manufacture functional products, such as proteins, which have numerous different functions in living organisms. Messenger RNA (mRNA) serves ...

For cells, internal stress leads to unique shapes

Apr 16, 2014

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

User comments : 0

More news stories

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Researchers discover target for treating dengue fever

Two recent papers by a University of Colorado School of Medicine researcher and colleagues may help scientists develop treatments or vaccines for Dengue fever, West Nile virus, Yellow fever, Japanese encephalitis and other ...