# Artist's inspiration: How robot soccer led to a mirror that reflects your true face

##### November 16, 2012

When you look in a mirror, you see an image of yourself in reverse. But one odd mirror invented by mathematics professor Dr. R. Andrew Hicks at Drexel University shows your true face without reversing its image. That mirror is now on display as part of an art exhibition in New York City's Room East gallery by artist Robin Cameron, through December 9.

Hicks's unusual mirrors gained national attention in summer of 2012 when one of those inventions, a driver's side that eliminates the blind spot with minimal distortion, received a U.S. Patent.

Other novelty mirrors show a non-reversed image to a viewer by placing two mirrors at right angles, so that looking at the glass shows a simple reflection of the reflection. Hicks's non-reversing mirror is different, in that it is a single, smooth curved piece of glass that shows a non-reversed image.

Cameron found inspiration in Hicks's story when she discovered it through online research. Hicks and Drexel subsequently loaned her the non-reversing mirror for use in her group of artworks entitled "P-R-O-C-E-S-S-E-S."

"The mirror specifically relates to this particular grouping of work because it is about process. I wanted to know more about what leads someone to make a non-reversing mirror," Cameron said.

Hicks became an inventor of mirrors via a background in hobbyist electronics tinkering, formal education in mathematics and postdoctoral work in computer science, before continuing the work as a professor in Drexel's College of Arts and Sciences. Hicks began mathematical manipulations of when developing vision for soccer-playing robots, using curved mirrors atop the robots' heads to give a 360-degree view. He developed to subtly manipulate the angles of curved mirror surfaces so that distortions in the reflection are precisely controlled. The precise manipulations change the directions are reflected off of the surface in a manner analogous to changing the angles of millions of tiny facets on a flattened disco ball, but decreasing the size of each facet until a smooth surface results.

"I see some similarities to the work that I do and the work that Andrew does, in terms of following what interests you and creating something new." Cameron said.

Beyond its value as an object of art, Hicks considers the non-reversing mirror an interesting novelty and is still looking for practical applications. "I always thought it would make a great toy," Hicks said.

The mirror is popular when he shows it at talks and in classes. "People often think that such a thing should be impossible, and they want to hold it and look at it from different angles," he said. "It's sort of as if some object from an M.C. Escher print existed in the real world."

## Related Stories

#### Math professor's side mirror that eliminates 'blind spot' receives US patent

June 7, 2012

A side mirror that eliminates the dangerous "blind spot" for drivers has now received a U.S. patent. The subtly curved mirror, invented by Drexel University mathematics professor Dr. R. Andrew Hicks, dramatically increases ...

#### Using math to design amazing mirrors

January 18, 2009

Mathematician Andrew Hicks was in his Drexel University office, puzzling over some problem he can no longer recall, when colleague Ron Perline walked in with a challenge. Fresh from his morning bicycle ride, Perline was unhappy ...

#### Being 'secondary' is important for a Webb Telescope mirror

July 20, 2011

(PhysOrg.com) -- "Secondary" may not sound as important as "primary" but when it comes to the next-generation James Webb Space Telescope a secondary mirror plays a critical role in ensuring the telescope gathers information ...

#### James Webb space telescope's mirrors get 'shrouded'

June 7, 2012

(Phys.org) -- Earlier this year, NASA completed deep-freeze tests on the James Webb Space Telescope mirrors in a "shroud" at the X-ray & Cryogenic Facility (XRCF) at Marshall Space Flight Center in Huntsville, Ala.

#### Webb telescope uses powerful mirrors to detect distant light

September 17, 2012

(Phys.org)—The powerful primary mirrors of the James Webb Space Telescope will be able to detect the light from distant galaxies. The manufacturer of those mirrors, Ball Aerospace & Technologies Corp. of Boulder, Colo., ...

#### Two kinds of Webb telescope mirrors arrive at NASA Goddard

April 13, 2011

It takes two unique types of mirrors working together to see farther back in time and space than ever before, and engineers at NASA's Goddard Space Flight Center have just received one of each type. Primary and Secondary ...

## Recommended for you

#### Apple adds keyboard touch functions to Mac in major refresh

October 27, 2016

Apple's high-end Mac laptops are getting a touch-sensitive strip above the keyboard, as the company aims to spark consumer interest in a product line that's often overshadowed by newer gadgets like the iPad and iPhone.

#### Learning Morse code without trying

October 27, 2016

It's not exactly beating something into someone's head. More like tapping it into the side.

#### You are less anonymous on the web than you think—much less

October 26, 2016

If you still think you can be anonymous on the internet, a team of Stanford and Princeton researchers has news for you: You can't. Over the summer, the team launched what they called the Footprints Project, which invited ...

#### Microsoft aims at Apple with high-end PCs, 3D software

October 26, 2016

Microsoft launched a new consumer offensive Wednesday, unveiling a high-end computer that challenges the Apple iMac along with an updated Windows operating system that showcases three-dimensional content and "mixed reality."

#### For the first time, brain surface stimulation provides 'touch' feedback to direct movement

October 26, 2016

In the quest to restore movement to people with spinal cord injuries, researchers have focused on getting brain signals to disconnected nerves and muscles that no longer receive messages that would spur them to move.

#### Making it easier to collaborate on code

October 26, 2016

Git is an open-source system with a polarizing reputation among programmers. It's a powerful tool to help developers track changes to code, but many view it as prohibitively difficult to use.