Artist's inspiration: How robot soccer led to a mirror that reflects your true face

November 16, 2012
Dr. R. Andrew Hicks, professor of mathematics at Drexel University, took this photo of himself in the non-reversing mirror he invented. Credit: R. Andrew Hicks

When you look in a mirror, you see an image of yourself in reverse. But one odd mirror invented by mathematics professor Dr. R. Andrew Hicks at Drexel University shows your true face without reversing its image. That mirror is now on display as part of an art exhibition in New York City's Room East gallery by artist Robin Cameron, through December 9.

Hicks's unusual mirrors gained national attention in summer of 2012 when one of those inventions, a driver's side that eliminates the blind spot with minimal distortion, received a U.S. Patent.

Other novelty mirrors show a non-reversed image to a viewer by placing two mirrors at right angles, so that looking at the glass shows a simple reflection of the reflection. Hicks's non-reversing mirror is different, in that it is a single, smooth curved piece of glass that shows a non-reversed image.

Cameron found inspiration in Hicks's story when she discovered it through online research. Hicks and Drexel subsequently loaned her the non-reversing mirror for use in her group of artworks entitled "P-R-O-C-E-S-S-E-S."

"The mirror specifically relates to this particular grouping of work because it is about process. I wanted to know more about what leads someone to make a non-reversing mirror," Cameron said.

Hicks became an inventor of mirrors via a background in hobbyist electronics tinkering, formal education in mathematics and postdoctoral work in computer science, before continuing the work as a professor in Drexel's College of Arts and Sciences. Hicks began mathematical manipulations of when developing vision for soccer-playing robots, using curved mirrors atop the robots' heads to give a 360-degree view. He developed to subtly manipulate the angles of curved mirror surfaces so that distortions in the reflection are precisely controlled. The precise manipulations change the directions are reflected off of the surface in a manner analogous to changing the angles of millions of tiny facets on a flattened disco ball, but decreasing the size of each facet until a smooth surface results.

"I see some similarities to the work that I do and the work that Andrew does, in terms of following what interests you and creating something new." Cameron said.

Beyond its value as an object of art, Hicks considers the non-reversing mirror an interesting novelty and is still looking for practical applications. "I always thought it would make a great toy," Hicks said.

The mirror is popular when he shows it at talks and in classes. "People often think that such a thing should be impossible, and they want to hold it and look at it from different angles," he said. "It's sort of as if some object from an M.C. Escher print existed in the real world."

Explore further: Using math to design amazing mirrors

Related Stories

Using math to design amazing mirrors

January 18, 2009

Mathematician Andrew Hicks was in his Drexel University office, puzzling over some problem he can no longer recall, when colleague Ron Perline walked in with a challenge. Fresh from his morning bicycle ride, Perline was unhappy ...

Two kinds of Webb telescope mirrors arrive at NASA Goddard

April 13, 2011

It takes two unique types of mirrors working together to see farther back in time and space than ever before, and engineers at NASA's Goddard Space Flight Center have just received one of each type. Primary and Secondary ...

Being 'secondary' is important for a Webb Telescope mirror

July 20, 2011

(PhysOrg.com) -- "Secondary" may not sound as important as "primary" but when it comes to the next-generation James Webb Space Telescope a secondary mirror plays a critical role in ensuring the telescope gathers information ...

James Webb space telescope's mirrors get 'shrouded'

June 7, 2012

(Phys.org) -- Earlier this year, NASA completed deep-freeze tests on the James Webb Space Telescope mirrors in a "shroud" at the X-ray & Cryogenic Facility (XRCF) at Marshall Space Flight Center in Huntsville, Ala.

Webb telescope uses powerful mirrors to detect distant light

September 17, 2012

(Phys.org)—The powerful primary mirrors of the James Webb Space Telescope will be able to detect the light from distant galaxies. The manufacturer of those mirrors, Ball Aerospace & Technologies Corp. of Boulder, Colo., ...

Recommended for you

Smart home heating and cooling

August 28, 2015

Smart temperature-control devices—such as thermostats that learn and adjust to pre-programmed temperatures—are poised to increase comfort and save energy in homes.

Smallest 3-D camera offers brain surgery innovation

August 28, 2015

To operate on the brain, doctors need to see fine details on a small scale. A tiny camera that could produce 3-D images from inside the brain would help surgeons see more intricacies of the tissue they are handling and lead ...

Team creates functional ultrathin solar cells

August 27, 2015

(Phys.org)—A team of researchers with Johannes Kepler University Linz in Austria has developed an ultrathin solar cell for use in lightweight and flexible applications. In their paper published in the journal Nature Materials, ...

Interactive tool lifts veil on the cost of nuclear energy

August 24, 2015

Despite the ever-changing landscape of energy economics, subject to the influence of new technologies and geopolitics, a new tool promises to root discussions about the cost of nuclear energy in hard evidence rather than ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.