Light and air: Sunlight-driven CO2 fixation

November 19, 2012
Light and air: Sunlight-driven CO2 fixation

(Phys.org)—The increased use of renewable energy sources, particularly sunlight, is highly desirable, as is industrial production that is as CO2-neutral as possible. Both of these wishes could be fulfilled if CO2 could be used as the raw material in a system driven by solar energy. Japanese researchers have now introduced an approach to this type of process in the journal Angewandte Chemie. Their method is based on a principle similar to natural photosynthesis.

The use of carbon dioxide as a source of carbon may be an attractive option for reducing the consumption of fossil feedstocks and improving the CO2 footprint of chemical products. The biggest obstacle in our way is the high stability of the CO2 molecule. One of the possibilities for jumping this hurdle is to use very high-energy molecules to react with CO2. The photosynthetic process in provides an example of how this could work. This process takes place in two steps: the light reactions and the dark reactions. In the light reactions, the photosynthetic system captures photons and stores their energy in the form of energetic . These are subsequently used to drive the dark reactions that use CO2 as a carbon source to synthesize complex .

Researchers working with Masahiro Murakami at Kyoto University used the same principle to design their process. In this case, the first step is also a reaction driven by light. The action of UV light can convert the starting material, an α-methylamino ketone, to a very energetic molecule. This also works with sunlight, as the researchers found out. An intramolecular rearrangement with results in a molecule containing a ring made of three and one . This type of ring is under a great deal of strain and is correspondingly reactive. This "light reaction" was coupled to a "dark reaction": In the subsequent light-independent step, the highly energetic compound captures CO2 in the presence of a base. This forms a cyclic amino-substituted carbonic acid diester that could be useful as an intermediate for chemical syntheses.

The striking thing about this reaction scheme is that the technique is simple. Diffuse sunlight on cloudy days is enough to drive the process. The second step can be carried out in the same reaction vessel through simple addition of the base and heating to 60 °C. The yield is 83 %. In addition, the process is very adaptable because a wide variety of α-methylamino ketones can be used as starting materials.

Explore further: Modified microbes turn carbon dioxide to liquid fuel

More information: Murakami, M. Solar-Driven Incorporation of Carbon Dioxide into α-Amino Ketones, Angewandte Chemie International Edition 2012, 51, No. 47, 11750–11752. dx.doi.org/10.1002/anie.201206166

Related Stories

Modified microbes turn carbon dioxide to liquid fuel

March 29, 2012

Imagine being able to use electricity to power your car — even if it's not an electric vehicle. Researchers at the UCLA Henry Samueli School of Engineering and Applied Science have for the first time demonstrated a method ...

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

New chemistry makes strong bonds weak

July 28, 2015

Researchers at Princeton have developed a new chemical reaction that breaks the strongest bond in a molecule instead of the weakest, completely reversing the norm for reactions in which bonds are evenly split to form reactive ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.