Bringing measuring accuracy to radical treatment

Nov 12, 2012
Bringing measuring accuracy to radical treatment

An international team of scientists working at the Plasma Technology research unit at Ghent University, Belgium, has determined for the first time the absolute density of active substances called radicals found in a state of matter known as plasma, in a study about to be published in European Physical Journal D. These findings could have important implications for medicine—for example, for stimulating tissue regeneration, or to induce a targeted antiseptic effect in vivo without affecting neighbouring tissues.

Qing Xiong and colleagues utilised laser fluorescence spectroscopy (LIF), a detection method used to estimate the density of radicals in plasma. Plasma is made of charged species, active molecules such as radicals and atoms.

The authors chose to focus on OH radicals because they are one of the most important reactive species in plasma science due to their high level of oxidation. This means that chemical reactions with OH initiate the destruction of harmful components either in the human body or in nature such as carbon monoxide, and methane.

The problem is that, up to now, laser-induced fluorescent capability to measure the absolute density of radicals has been very limited because of issues with registering and analysing the fluorescence signal.

In this study, the authors present a simplified model which takes into account energy transfer stemming from the radicals' vibrations. It can be used to analyse the LIF signal at regular atmospheric pressure. They then confirm the validity of their model experimentally, with a made of Argon gas mixed with .

The calculation of one-dimensional line-averaged OH density made in this paper could also be extended to a two-dimensional spatial resolution of the OH radicals in future work.

Explore further: New approach to form non-equilibrium structures

More information: Q. Xiong, A. Nikiforov, L. Li2, N. Britun, R. Snyders, X. P. Lu, C. Leys, Absolute OH density determination by laser induced fluorescence spectroscopy in an atmospheric pressure RF plasma jet, European Physical Journal D, DOI: 10.1140/epjd/e2012-30474-8

add to favorites email to friend print save as pdf

Related Stories

Free radicals maybe good for you

Feb 28, 2011

Fear of free radicals may be exaggerated, according to scientists from Karolinska Institutet. A new study, published in The Journal of Physiology, shows that free radicals act as signal substances that cause the heart to ...

Redefining 'clean'

Oct 31, 2011

Aiming to take "clean" to a whole new level, researchers at the University of California at Berkeley and the University of Maryland at College Park have teamed up to study how low-temperature plasmas can deactivate potentially ...

Recommended for you

First in-situ images of void collapse in explosives

8 hours ago

While creating the first-ever images of explosives using an x-ray free electron laser in California, Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect ...

New approach to form non-equilibrium structures

Jul 24, 2014

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

User comments : 0