Tying our fate to molecular markings

October 11, 2012

(Phys.org)—A Simon Fraser University physicist has helped discover that understanding how a chemical mark on our DNA affects gene expression could be as useful to scientists as fingerprints are to police at a crime scene.

In a new study, Emberly and his colleagues cite proof that variable methylation, a chemical mark on our DNA, is predictive of age, gender, stress, cancer and early-life socioeconomic status within a population. The (PNAS) has just published the study online.

Working with researchers at the University of British Columbia and Stanford University, Eldon Emberly studied the variation of methylation over a large group of individuals.

DNA that is methylated in our genomes is known to affect whether genes are turned on or off. predicates several attributes linked to our identity, such as gender, ethnicity, age and health.

The trio measured methylation from DNA in the of 92 people aged 24 to 45. Emberly's lab helped to mine the resulting data sets for correlations between variation in the chemical mark and variable social, psychological and in the subjects.

The results demonstrated that those who had experienced childhood poverty had a different methylation level from those who hadn't. This was despite the fact everyone in the cohort had achieved the same later in life.

That meant that early-life environment had left a detectable molecular mark on an individual's DNA.

The correlation between methylation and gene expression was complex because it wasn't always predictable but there was one connection of particular note says Emberly, an SFU associate professor.

"Variable methylation correlated with variable expression of the gene DDX4, which is linked to certain cancers."

Emberly says this study's discoveries raise interesting questions, as the connection between methylation and some traits, such as smoking and , was weaker than expected or non existent.

"We're now investigating whether methylation variation in different types of tissue is more predictive of some trait," adds Emberly.

Pau Farre, a master's of science student in physics under Emberly's supervision, is doing a statistical analysis of the variability in methylation across tissues.

Explore further: Epigenetic signals differ across alleles

More information: Factors underlying variable DNA methylation in a human community cohort, doi: 10.1073/pnas.1121249109

Related Stories

Epigenetic signals differ across alleles

February 12, 2010

Researchers from the Institute of Psychiatry (IoP), King's College London, have identified numerous novel regions of the genome where the chemical modifications involved in controlling gene expression are influenced by either ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.