Super-microbes engineered to solve world environmental problems

Oct 08, 2012
A photograph of a transmission electron micrograph of metabolically engineered Escherichia coli cells accumulating poly(lactate-co-3hydroxybutyrate) copolymers. Credit: The Korea Advanced Institute of Science and Technology (KAIST)

Environmental problems, such as depleting natural resources, highlight the need to establish a renewable chemical industry. Metabolic engineering enhances the production of chemicals made by microbes in so-called "cell factories". Next Monday, world class scientist Professor Sang Yup Lee of KAIST (Korea Advanced Institute of Science and Technology) will explain how metabolic engineering could lead to the development of solutions to these environmental problems.

For example, the polyester polylactic acid (PLA) is a biodegradable material with a wide range of uses, from , to cups, bags, food packaging and disposable tableware. It and its co-polymer can be produced by direct fermentation of renewable resources using metabolically engineered .1

Microorganisms isolated from nature use their own metabolism to produce certain chemicals. But they are often inefficient, so metabolic engineering is used to improve microbial performance. Beginning in the 1990s, metabolic engineering involves the modification of to enhance the production of what's known as a bioproduct. This bioproduct can be something that the cell produces naturally, like ethanol or butanol. It can also be something that the cells mechanisms can produce if their natural are altered in some way. The range of uses of this bioproduct can be broadened through metabolic engineering, which can also optimize the overall process of bioproduct synthesis.

Recently, metabolic engineering has become more powerful, through the integration of itself with systems and synthetic biology. is a relatively new approach to which looks at the complex interactions within whole cell systems. It allows cell-wide understanding of metabolic reactions and the way these are regulated by the cell's genes.

Synthetic biology is another new approach that designs and constructs new and systems that aren't found in nature. It allows the design of new genes, modules and circuits that can be used to modulate the cells metabolism to make more of the desired bioproduct. So systems metabolic engineering can now develop superior microorganisms much more efficiently through the integration of itself with systems biology and synthetic biology.

Professor Lee will introduce general strategies for systems metabolic engineering which will be accompanied by many successful examples, including the production of chemicals, fuels and materials such as propanol, butanol, 1,4-diaminobutane, 1,5-diaminopentane, succinic acid, polyhydroxyalkanoates, and polylactic acid.

Professor Sang Yup Lee said: "Bio-based production of chemicals and materials will play an increasingly important role in establishing a sustainable world. To make the bioprocess efficient and economically competitive, it is essential to improve the performance of microorganisms through systems . From industrial solvents to plastics, an increasing number of products of everyday use will be produced through bioprocesses."

Professor Lee will present the 5th Environmental Microbiology Lecture on 8 October 2012 at the Royal Society of Medicine, 1 Wimpole Street, London W1G 0AE. Registration begins at 17.30 and the lecture will start 18.30. There will be a drinks reception after the lecture at 19.30 - 20.30.

Explore further: Vermicompost leachate improves tomato seedling growth

More information: 1 Yu Kyung Jung, Tae Yong Kim, Si Jae Park, Sang Yup Lee. Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnology and Bioengineering Volume 105, Issue 1, pages 161-171, 1 January 2010 DOI:10.1002/bit.22548

add to favorites email to friend print save as pdf

Related Stories

Metabolic models make remediation more manageable

Jun 08, 2011

(PhysOrg.com) -- In efforts to reduce contamination at a former uranium mill tailings site, Dr. Krishna Mahadevan is developing genome-scale models to determine why certain bacteria reduce uranium better than ...

Recommended for you

Vermicompost leachate improves tomato seedling growth

Nov 21, 2014

Worldwide, drought conditions, extreme temperatures, and high soil saline content all have negative effects on tomato crops. These natural processes reduce soil nutrient content and lifespan, result in reduced plant growth ...

Plant immunity comes at a price

Nov 21, 2014

Plants are under permanent attack by a multitude of pathogens. To win the battle against fungi, bacteria, viruses and other pathogens, they have developed a complex and effective immune system. And just as ...

Evolution: The genetic connivances of digits and genitals

Nov 20, 2014

During the development of mammals, the growth and organization of digits are orchestrated by Hox genes, which are activated very early in precise regions of the embryo. These "architect genes" are themselves regulated by ...

Surrogate sushi: Japan biotech for bluefin tuna

Nov 20, 2014

Of all the overfished fish in the seas, luscious, fatty bluefin tuna are among the most threatened. Marine scientist Goro Yamazaki, who is known in this seaside community as "Young Mr. Fish," is working to ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.