Solving stem cell mysteries

Oct 26, 2012

The ability of embryonic stem cells to differentiate into different types of cells with different functions is regulated and maintained by a complex series of chemical interactions, which are not well understood. Learning more about this process could prove useful for stem cell-based therapies down the road. New research from a team led by Carnegie's Yixian Zheng zeroes in on the process by which stem cells maintain their proper undifferentiated state. Their results are published in Cell October 26.

Embryonic stem cells go through a process called self-renewal, wherein they undergo multiple cycles of division while not differentiating into any other type of cells. This process is dependent on three , which guide both self-renewal and eventual differentiation. But the integration of these three networks has remained a mystery.

Using a combination of genetic, protein-oriented and physiological approaches involving mouse embryonic stem cells, the team—which also included current and former Carnegie scientists Junling Jia, Xiaobin Zheng, Junqi Zhang, Anying Zhang, and Hao Jiang—uncovered a mechanism that integrates all three networks involved in embryonic stem cell self-renewal and provide a critical missing link to understanding this process.

The key is a protein called Utf1. It serves three important roles. First, it balances between activating and deactivating the necessary genes to direct the cell toward differentiation. At the same time, it acts on that is the transcription product of the genes when they're activated by tagging it for degradation, rather than allowing it to continue to serve its cellular function. Lastly, it blocks a genetic feedback loop that normally inhibits , allowing it to occur in the rapid nature characteristic of embryonic stem cells.

"We are slowly but surely growing to understand the physiology of ," Zheng said. "It is crucial that we continue to carrying out basic research on how these cells function."

Explore further: How plant cell compartments change with cell growth

Related Stories

Surprise role of nuclear structure protein in development

Nov 24, 2011

Scientists have long held theories about the importance of proteins called B-type lamins in the process of embryonic stem cells replicating and differentiating into different varieties of cells. New research from a team led ...

Study: Skin cells turned into stem cells

Aug 22, 2005

The controversy over embryonic stem cell research may become moot with a procedure that turns skin cells into what appear to be embryonic stem cells.

New study makes key finding in stem cell self-renewal

Feb 06, 2012

A University of Minnesota-led research team has proposed a mechanism for the control of whether embryonic stem cells continue to proliferate and stay stem cells, or differentiate into adult cells like brain, liver or skin.

Recommended for you

How plant cell compartments change with cell growth

Aug 22, 2014

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

Aug 22, 2014

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

Aug 22, 2014

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

Aug 22, 2014

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 0