A complete solution for oil-spill cleanup

Oct 03, 2012

Scientists are describing what may be a "complete solution" to cleaning up oil spills—a superabsorbent material that sops up 40 times its own weight in oil and then can be shipped to an oil refinery and processed to recover the oil. Their article on the material appears in ACS' journal Energy & Fuels.

T. C. Mike Chung and Xuepei Yuan point out that current methods for coping with oil spills like the 2010 Deepwater Horizon disaster are low-tech, decades-old and have many disadvantages. Corncobs, straw and other absorbents, for instance, can hold only about 5 times their own weight and pick up water, as well as oil. Those then become industrial waste that must be disposed of in special landfills or burned.

Their solution is a polymer material that transforms an oil spill into a soft, solid oil-containing gel. One pound of the material can recover about 5 gallons of crude oil. The gel is strong enough to be collected and transported. Then, it can be converted to a liquid and refined like regular crude oil. That oil would be worth $15 when sells for $100 a barrel. "Overall, this cost-effective new polyolefin oil-SAP technology shall dramatically reduce the environmental impacts from spills and help recover one of our most precious natural resources," the authors said.

Explore further: New material steals oxygen from the air

More information: "A Novel Solution to Oil Spill Recovery; Using Thermodegradable Polyolefin Oil Super-absorbent (oil-SAP)" Energy Fuels, 2012, 26 (8), pp 4896–4902
DOI: 10.1021/ef300388h

Abstract
This paper discusses a novel approach that may provide a complete solution to combating oil spills. The technology is centered on a cross-linked polyolefin terpolymer (x–OS–DVB), containing 1-octene, styrene, and divinylbenzene units, which is an oil superabsorbent polymer (oil–SAP) with aliphatic and aromatic side chains that have similar solubility parameters (oleophilic and hydrophobic properties), with the hydrocarbons in crude oil. Some x–OS–DVB terpolymers, with desirable morphology (amorphous, low Tg, and high free volume) and lightly cross-linked (complete network) structure, show rapid oil absorption and swelling to reach a capacity 45 times their weight. The capacity of oil uptake (swelling) is inversely proportional to the cross-linking density. The combination of selective oil absorption (without water) and tough mechanical strength offers buoyancy, stability, and easy recovery on water surfaces. The recovered oil-swelled gel, containing more than 98% oil and 2% x–OS–DVB, is suitable for regular oil-refining processes (an economic, no waste, and no pollutant approach). The bulk side chains in x–OS–DVB result in a relatively low ceiling temperature for depolymerization and zero heating residue at 450 °C, well below the first distillation step (>600 °C) in oil refining. Furthermore, polyolefins are the most inexpensive polymeric material, with a large production capability around the world. Overall, this cost-effective new polyolefin oil–SAP technology shall dramatically reduce the environmental impacts from oil spills and help recover one of our most precious natural resources.

add to favorites email to friend print save as pdf

Related Stories

New materials invention for oil spill clean-up

Jan 12, 2011

The recent oil spill in the Gulf of Mexico was not the largest in history nor will it be the last, according to T.C. (Mike) Chung, professor of materials science and engineering at Penn State. But a recent ...

First 'microsubmarines' designed to help clean up oil spills

May 02, 2012

Scientists are reporting development and successful testing of the first self-propelled "microsubmarines" designed to pick up droplets of oil from contaminated waters and transport them to collection facilities. The report ...

NIST releases Gulf of Mexico crude oil reference material

Mar 07, 2012

The National Institute of Standards and Technology (NIST) has released a new certified reference material to support the federal government's Natural Resources Damage Assessment (NRDA) in the wake of the April ...

Recommended for you

Characterizing an important reactive intermediate

4 minutes ago

An international group of researchers led by Dr. Warren E. Piers (University of Calgary) and Dr. Heikki M. Tuononen (University of Jyväskylä) has been able to isolate and characterize an important chemical intermediate ...

Surfaces that communicate in bio-chemical Braille

7 minutes ago

A Braille-like method that enables medical implants to communicate with a patient's cells could help reduce biomedical and prosthetic device failure rates, according to University of Sydney researchers.

New material steals oxygen from the air

20 hours ago

Researchers from the University of Southern Denmark have synthesized crystalline materials that can bind and store oxygen in high concentrations. Just one spoon of the substance is enough to absorb all the ...

Neutral self-assembling peptide hydrogel

Sep 30, 2014

Self-assembling peptides are characterized by a stable β-sheet structure and are known to undergo self-assembly into nanofibers that could further form a hydrogel. Self-assembling peptide hydrogels have ...

User comments : 0