Single-DNA images give clues to breast cancer

Oct 29, 2012

For the first time, researchers at the University of California, Davis, have watched single strands of DNA being prepped for repair. The research, published this week in the journal Nature, has implications for understanding the origins of breast cancer.

"It's clear that in cells, DNA breaks all the time, and there's machinery to repair those breaks and retain genetic integrity," said Stephen Kowalczykowski, distinguished professor of microbiology and of at UC Davis. Kowalczykowski is senior author of the paper.

To repair a break in the , a single strand has to seek out and find its matching sequence on the opposite strand—a task that Kowalczykowski compares to finding a needle in a haystack. To do that, the single strand first has to be coated with a called RecA.

"The RecA/DNA filament is the machine that looks for that needle," he said.

This video is not supported by your browser at this time.
Proteins assembling on single-strand DNA. Credit: Jason Bell and Steve Kowalczykowski

In the new study, graduate student Jason Bell used technology developed in Kowalczykowski's lab over the past decade to image individual strands of as they were coated with a protein called RecA. Studying how this process works gives insights into the "mediator" proteins responsible that facilitate it, Kowalczykowski said. In humans, one of those mediators is the protein BRCA2, which is strongly associated with .

RecA, called Rad51 in humans, helps the single strand of DNA find its complementary, matching strand elsewhere in the chromosome. The RecA protein has to displace another protein, imaginatively named single-strand DNA-binding protein, to get to the DNA.

The researchers were able to watch in real time as the RecA units displaced single--binding proteins and then spread in both directions until the whole strand was covered.

They found that the process has to start with two molecules of RecA attaching to the DNA. Then single molecules of RecA can be added at either end, similar to adding beads on a string.

One surprise was that in the absence of mediators, the process was relatively slow, Kowalczykowski said. It took about 30 minutes to coat a strand—longer than the time E. coli takes to go through a cell division cycle.

The mediator proteins are crucial for controlling the speed at which RecA assembles on the single strand of DNA, Kowalczykowski said. Too slow, and DNA breaks would not be repaired properly; too fast, and it would capture and coat the short pieces of single-stranded DNA briefly produced during normal DNA replication. Instead, the process only works on DNA that persists because it is actually damaged or broken.

"I'm sure that works in the same way," he said.

Explore further: Mycologist promotes agarikon as a possibility to counter growing antibiotic resistance

Related Stories

Study shows how DNA finds its match

Feb 08, 2012

It's been more than 50 years since James Watson and Francis Crick showed that DNA is a double helix of two strands that complement each other. But how does a short piece of DNA find its match, out of the millions ...

DNA and the 'magic rings' trick

Oct 11, 2010

(PhysOrg.com) -- A new study from UC Davis shows how, like a conjuring trick with interlocking rings, two interlocked pieces of DNA are separated after DNA is copied or repaired. The finding was published online Oct. 10 in ...

Protein made by breast cancer gene purified

Aug 22, 2010

A key step in understanding the origins of familial breast cancer has been made by two teams of scientists at the University of California, Davis. The researchers have purified, for the first time, the protein produced by ...

Recommended for you

YEATS protein potential therapeutic target for cancer

Oct 23, 2014

Federal Express and UPS are no match for the human body when it comes to distribution. There exists in cancer biology an impressive packaging and delivery system that influences whether your body will develop cancer or not.

Precise and programmable biological circuits

Oct 23, 2014

A team led by ETH professor Yaakov Benenson has developed several new components for biological circuits. These components are key building blocks for constructing precisely functioning and programmable bio-computers.

User comments : 0