Self-powered sensors to monitor nuclear fuel rod status

Oct 23, 2012

Japan's Fukushima Dai'ichi nuclear disaster that occurred in 2011—a result of the strongest earthquake on record in the country and the powerful tsunami waves it triggered—underscored the need for a method to monitor the status of nuclear fuel rods that doesn't rely on electrical power.

During the disaster, the electrical power connection to the nuclear reactor failed and rendered back-up , coolant pumps, and sensor systems useless. The nuclear plant's operators were unable to monitor the fuel rods in the reactor and spent fuel in the storage ponds.

To address this issue, Penn State researchers teamed with the Idaho National Laboratory to create a self-powered sensor capable of harnessing heat from nuclear reactors' harsh operating environments to transmit data without electronic networks. The team will present their research at the Acoustical Society of America's upcoming 164th Meeting, October 22-26, 2012, in Kansas City, Missouri.

"Thermoacoustics exploits the interaction between heat and ," explains Randall A. Ali, a graduate student studying acoustics at Penn State. "Thermoacoustic sensors can operate without moving parts and don't require external power if a heat source, such as fuel in a , is available."

Thermoacoustic engines can be created from a closed cylindrical tube—even a fuel rod—and a passive structure called a "stack."

"We used stacks made from a ceramic material with a regular array of parallel pores that's manufactured as the substrate for found in many automotive exhaust systems. These stacks facilitate the transfer of heat to the gas in a resonator, and heat is converted to sound when there's a temperature difference along the stack," Ali elaborates.

When a thermoacoustic engine operates, an acoustically driven streaming gas jet circulates hot fluid away from the heat source—nuclear fuel—and along the walls of the engine and into the surrounding cooling fluid.

Penn State and Idaho National Laboratory are also investigating using thermoacoustic sound to monitor microstructural changes in nuclear fuel, measure gas mixture composition, and to act as a failsafe device in emergency situations.

Explore further: Many tongues, one voice, one common ambition

add to favorites email to friend print save as pdf

Related Stories

Idaho researcher building used nuclear fuel sensor

Jul 13, 2012

Much of the 6,200 metric tons of used nuclear fuel generated by U.S. power plants over the last 40 years is stored safely in giant stainless steel casks. Darryl Butt, a Boise State University professor, is ...

A traveling-wave engine to power deep space travel

Sep 17, 2004

A University of California scientist working at Los Alamos National Laboratory and researchers from Northrop Grumman Space Technology have developed a novel method for generating electrical power for deep-space travel us ...

Sustainable nuclear energy moves a step closer

Dec 11, 2006

In future a new generation of nuclear reactors will create energy, while producing virtually no long-lasting nuclear waste, according to research conducted by Wilfred van Rooijen, who will receive his Delft University of ...

The art of shutting down a nuclear plant

Feb 13, 2012

Gaëtan Girardin, researcher in nuclear engineering, gives us the key to understanding nuclear reactor safety. While the disaster at Fukushima is at the center of our conversation, the recent and minor ...

Plutonium in troubled reactors, spent fuel pools

Mar 18, 2011

(AP) --The fuel rods at all six reactors at the stricken Fukushima Dai-ichi complex contain plutonium - better known as fuel for nuclear weapons. While plutonium is more toxic than uranium, other radioactive ...

Recommended for you

Many tongues, one voice, one common ambition

11 hours ago

There is much need to develop energy efficient solutions for residential buildings in Europe. The EU-funded project, MeeFS, due to be completed by the end of 2015, is developing an innovative multifunctional and energy efficient ...

Panasonic, Tesla to build big US battery plant

13 hours ago

(AP)—American electric car maker Tesla Motors Inc. is teaming up with Japanese electronics company Panasonic Corp. to build a battery manufacturing plant in the U.S. expected to create 6,500 jobs.

Simulation models optimize water power

14 hours ago

The Columbia River basin in the Pacific Northwest offers great potential for water power; hydroelectric power stations there generate over 20 000 megawatts already. Now a simulation model will help optimize the operation ...

Charging electric cars efficiently inductive

14 hours ago

We already charge our toothbrushes and cellphones using contactless technology. Researchers have developed a particularly efficient and cost-effective method that means electric cars could soon follow suit.

User comments : 0