Scientists identify likely origins of vertebrate air breathing

Oct 16, 2012

University of Alaska Fairbanks scientists have identified what they think is the ancestral trait that allowed for the evolution of air breathing in vertebrates. They will present their research at the 42nd annual meeting of the Society for Neuroscience Oct. 17 in New Orleans.

"To breathe air with a lung you need more than a lung, you need neural circuitry that is sensitive to carbon dioxide," said Michael Harris, a UAF neuroscientist and lead researcher on a project investigating the mechanisms that generate and control breathing.

"It's the that allows air-breathing organisms to take in oxygen, which cells need to convert food into energy, and expel the waste carbon dioxide resulting from that process," he said. "I'm interested in where that carbon-dioxide-sensitive , called a rhythm generator, came from."

Harris and colleagues think that air breathing likely evolved in an ancestral vertebrate that did not have a lung, but did have a rhythm generator.

"We try to find living examples of primitive non-air-breathing ancestors, like lamprey, and then look for evidence of a rhythm generator that did something other than air breathing," Harris said.

are that have characteristics similar to the first vertebrates. They do not have lungs and do not breathe air. As , they live in tubes dug into soft mud and breathe and feed by pumping water through their bodies. When mud or debris clogs a lamprey's tube, they use a cough-like behavior to expel water and clear the tube. A rhythm generator in their brain controls that behavior.

The video clip below recorded in Harris' lab shows the difference between gill ventilation and a 'cough' in a larval lamprey. The 'cough' occurs at about the 9 second mark.

This video is not supported by your browser at this time.

"We thought the lamprey 'cough' closely resembled air breathing in amphibians," said Harris. "When we removed the brains from lampreys and measured nerve activity that would normally be associated with breathing, we found patterns that resemble breathing and found that the rhythm generator was sensitive to carbon dioxide."

Air breathing evolved in fish and allowed the movement of vertebrates to land and the evolution of reptiles, birds and mammals. Without a carbon-dioxide-sensitive rhythm generator, the structure that would become the lung might not have worked as a lung.

"The evolution of lung breathing may be a repurposing of carbon dioxide sensitive cough that already existed in lungless , like the lamprey," said Harris.

Explore further: Rock-paper-scissors model helps researchers demonstrate benefits of high mutation rates

Related Stories

Cockroaches Control Their Breathing to Save Water

Sep 24, 2009

(PhysOrg.com) -- Many insects have been known for decades to hold their breath when resting, but the reasons have not been well understood. A new study on cockroaches suggests the insects reduce their breathing ...

Crocodiles rock the treadmill for research

Feb 24, 2012

Crocodiles have been put through their paces on a treadmill as part of a James Cook University research project to help determine which muscles they use to breathe.

Recommended for you

Plants with dormant seeds give rise to more species

Apr 18, 2014

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

User comments : 0

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.