Scientists advance cutting edge of immunology through study of macrophages

October 5, 2012

(Phys.org)—Macrophages are heavy hitters of the immune system. Their name literally means "to eat large objects." They are critical members of the body's defense team, such as in the lungs where they ingest invading microorganisms and at wound sites where they rush in and secrete coagulation factors that help form scabs. Macrophages also scavenge the body to find, digest, and recycle cell debris such as worn out red blood cells.

Researchers recently gained new knowledge about how are activated by studying a leukemic line of macrophages called RAW 264.7 that were treated with from Salmonella. The team used high-throughput mass spectrometers and custom software tools at EMSL to identify proteins (using proteomics analyses) and metabolites (using metabolomics analyses) that the cells produced under different conditions, as well as the RNAs (using transcriptomics analyses) that led to the proteins being expressed. They then built a of all of the known for RAW 264.7. The proteomic, metabolomic, and transcriptomic data were incorporated into the metabolic model, which improved the effectiveness of the model to predict new functions for metabolites in macrophages. Researchers found that the simple sugar, glucose, and the amino acid, arginine, played activating roles in macrophage defense mechanisms, while the amino acid, tryptophan, and vitamin D had an immune suppressive effect.

This study and its methodology significantly advance the cutting edge of immunology and disease prevention. For example, traditional therapies target invading bacteria. The research team's novel work may, however, lead to new therapy options such as using metabolic approaches to activate macrophages in response to an invader and to suppress macrophages when the threat is neutralized. In addition, novel immunotherapeutic drugs could be designed to mimic the activation or inhibition of specific metabolic pathways.

Explore further: Parasites that live inside cells use loophole to thwart immune system

More information: Bordbar A, ML Mo, ES Nakayasu, AC Schrimpe-Rutledge, YM Kim, TO Metz, MB Jones, BC Frank, RD Smith, SN Peterson, DE Hyduke, JN Adkins, BO Palsson. 2012. "Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation." Molecular Systems Biology 8:558. DOI:10.1038/msb.2012.21

Related Stories

Recommended for you

New insights into the production of antibiotics by bacteria

July 31, 2015

Bacteria use antibiotics as a weapon and even produce more antibiotics if there are competing strains nearby. This is a fundamental insight that can help find new antibiotics. Leiden scientists Daniel Rozen and Gilles van ...

Out of the lamplight

July 31, 2015

The human body is governed by complex biochemical circuits. Chemical inputs spur chain reactions that generate new outputs. Understanding how these circuits work—how their components interact to enable life—is critical ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.