Scientists advance cutting edge of immunology through study of macrophages

Oct 05, 2012

(Phys.org)—Macrophages are heavy hitters of the immune system. Their name literally means "to eat large objects." They are critical members of the body's defense team, such as in the lungs where they ingest invading microorganisms and at wound sites where they rush in and secrete coagulation factors that help form scabs. Macrophages also scavenge the body to find, digest, and recycle cell debris such as worn out red blood cells.

Researchers recently gained new knowledge about how are activated by studying a leukemic line of macrophages called RAW 264.7 that were treated with from Salmonella. The team used high-throughput mass spectrometers and custom software tools at EMSL to identify proteins (using proteomics analyses) and metabolites (using metabolomics analyses) that the cells produced under different conditions, as well as the RNAs (using transcriptomics analyses) that led to the proteins being expressed. They then built a of all of the known for RAW 264.7. The proteomic, metabolomic, and transcriptomic data were incorporated into the metabolic model, which improved the effectiveness of the model to predict new functions for metabolites in macrophages. Researchers found that the simple sugar, glucose, and the amino acid, arginine, played activating roles in macrophage defense mechanisms, while the amino acid, tryptophan, and vitamin D had an immune suppressive effect.

This study and its methodology significantly advance the cutting edge of immunology and disease prevention. For example, traditional therapies target invading bacteria. The research team's novel work may, however, lead to new therapy options such as using metabolic approaches to activate macrophages in response to an invader and to suppress macrophages when the threat is neutralized. In addition, novel immunotherapeutic drugs could be designed to mimic the activation or inhibition of specific metabolic pathways.

Explore further: Fighting bacteria—with viruses

More information: Bordbar A, ML Mo, ES Nakayasu, AC Schrimpe-Rutledge, YM Kim, TO Metz, MB Jones, BC Frank, RD Smith, SN Peterson, DE Hyduke, JN Adkins, BO Palsson. 2012. "Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation." Molecular Systems Biology 8:558. DOI:10.1038/msb.2012.21

add to favorites email to friend print save as pdf

Related Stories

Predicting immune system responses to various stimuli

Apr 14, 2011

Just like some people, macrophages—tiny cells that provide the immune system with a primary line of defense against pathogens—reveal a lot about themselves when challenged. Computer scientists and ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0