Rewriting Himalayan History: Ancient oceans on the top of the world

Oct 16, 2012
Rewriting Himalayan History: ancient oceans on the top of the world
Professor Jonathan Aitchison (left) and a colleague conducting fieldwork in the Ladakh Himalaya.

(Phys.org)—The Himalayas could be 20 million years younger than we think, according to ongoing research at the University of Sydney's School of Geosciences.

The Indian subcontinent may have collided with Eurasia and produced the Himalayas much later than geology textbooks currently claim, the University of Sydney's Head of the School of Geosciences, Professor Jonathan Aitchison says.

New evidence Professor Aitchison has collected and analysed with his research team indicates that the responsible might have happened only 35 million years ago, not 55, as currently believed. They found that India experienced multiple collisions as it travelled north, with the final collision between India and Asia occurring considerably later than originally thought.

"We looked at a number of indicators to determine when the mountain range formed," said Professor Aitchison.

"Examining the youngest marine rocks deposited between India and Asia showed that the collision between these two land masses happened around 35 million years ago. Obviously, once India and Asia collided there was no longer an ocean between them. Looking at the last marine rocks in the area gives us an indication of when the area last had an ocean above it.

"We also looked at the age of the youngest subduction-related along the southern margin of Asia. Subduction is when one tectonic plate moves below another tectonic plate as they converge, typically resulting in activity, like what we see around the Pacific 'ring-of-fire'.

"Once the Tethys Ocean, which used to lie between the ancient continents of Gondwana and Laurasia, had disappeared as oceanic crust north of India subducted beneath Asia, there was no more volcanism of this type. The youngest such rocks also give us an indication of timing."

The team also looked at the relative positions of India and Asia through time and regional geological patterns.

"Examining the appearance and nature of coarse-grained sedimentary rocks also helped us work out the timing," said Professor Aitchison.

"When tectonic plate collisions occur, pushing up mountain ranges, large amounts of coarse sediment are shed off the new mountain chain as gravels."

Professor Aitchison and his team have spent the past 17 years working in the Himalaya and Tibet, looking at how the mountain range formed.

"The massive chain had a profound effect on global climate systems when it formed, diverting atmospheric circulation patterns and leading to the establishment of the Asian monsoonal weather pattern," said Professor Aitchison.

"As the highest landmass on Earth, the Himalayas still have a huge impact on our weather systems. So understanding how and when they formed is of fundamental importance."

Professor Aitchison's talk will be accompanied by breathtaking photos of Himalayan scenery, taking the audience on a journey to the top of the world.

Explore further: Study shows air temperature influenced African glacial movements

More information: sydney.nicheit.com.au/science/science_forum/

add to favorites email to friend print save as pdf

Related Stories

Plate tectonics may take a break

Jan 03, 2008

Plate tectonics, the geologic process responsible for creating the Earth’s continents, mountain ranges, and ocean basins, may be an on-again, off-again affair. Scientists have assumed that the shifting of crustal plates ...

Curvy mountain belts

Jun 29, 2012

Mountain belts on Earth are most commonly formed by collision of one or more tectonic plates. The process of collision, uplift, and subsequent erosion of long mountain belts often produces profound global effects, including ...

New force driving Earth's tectonic plates discovered

Jul 06, 2011

Bringing fresh insight into long-standing debates about how powerful geological forces shape the planet, from earthquake ruptures to mountain formations, scientists at Scripps Institution of Oceanography at ...

Recommended for you

Image: Grand Canyon geology lessons on view

2 hours ago

The Grand Canyon in northern Arizona is a favorite for astronauts shooting photos from the International Space Station, as well as one of the best-known tourist attractions in the world. The steep walls of ...

First radar vision for Copernicus

2 hours ago

Launched on 3 April, ESA's Sentinel-1A satellite has already delivered its first radar images of Earth. They offer a tantalising glimpse of the kind of operational imagery that this new mission will provide ...

User comments : 0

More news stories

China says massive area of its soil polluted

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

First radar vision for Copernicus

Launched on 3 April, ESA's Sentinel-1A satellite has already delivered its first radar images of Earth. They offer a tantalising glimpse of the kind of operational imagery that this new mission will provide ...

Image: Grand Canyon geology lessons on view

The Grand Canyon in northern Arizona is a favorite for astronauts shooting photos from the International Space Station, as well as one of the best-known tourist attractions in the world. The steep walls of ...

Book offers simplified guide to shale gas extraction

The new book, "Science Beneath the Surface: A Very Short Guide to the Marcellus Shale," attempts to offer a reader-friendly, unbiased, scientific guide needed to make well-informed decisions regarding energy ...

Net neutrality balancing act

Researchers in Italy, writing in the International Journal of Technology, Policy and Management have demonstrated that net neutrality benefits content creator and consumers without compromising provider innovation nor pr ...