Researchers replicate white dwarf photospheres in lab using X-ray machine

Oct 15, 2012 by Bob Yirka report
Time-resolved spectrum of hydrogen Balmer lines in absorption from experiment z2244. Credit: arXiv:1210.0832 [astro-ph.SR]

(Phys.org)—Researchers at Sandia Labs have used a large x-ray machine to create high-density plasma that approximates the photosphere of white dwarf stars. The team has posted a paper describing the process and how it can be used to assist astronomers to the preprint server arXiv.

are stars that have used up most of their fuel—they're made of mostly carbon and are covered by gasses similar to an atmosphere. Scientists use to identify the elements that make up the of such stars, and then use the blurring—the result of surface pressure—to work out each star's gravity. With that information, researchers can calculate the star's radius and mass. This method is not precise, however, as researchers have found differences between calculations made using this method versus those found by measuring a star's movement through space.

To gain a better understanding of the nature of the gasses that surround white dwarfs, the research team at Sandia used an x-ray machine called the Z Pulsed Power Facility to heat a thin strip of gold held inside a filled chamber. At temperatures of 10,000K, the hydrogen becomes high-density plasma (ionized gas), which, the team reports, bears a striking resemblance to gases covering white dwarf stars.

The researchers explain that by re-creating the conditions that exist in the photosphere surrounding white dwarfs they will be better able to understand what is going on with the stars themselves, as they cannot be seen through the gasses. Changing the conditions under which the plasma is created in the lab allows for the creation of a variety of types which, in turn, allow the researchers to fine-tune their results. Eventually, they will be able to mimic conditions on individual white dwarfs, resulting in improved calculations used to describe the underlying star.

The x-ray machine is also capable of generating magnetic fields that are similar to those of white dwarf stars. By exerting such fields on the plasma generated, the researchers hope to gain a better understanding of how magnetic fields near white dwarfs impact the spectra of the gasses that surround them, which should help give a clearer picture of the stars themselves.

Explore further: And so they beat on, flagella against the cantilever

More information: Creating White Dwarf Photospheres in the Laboratory: Strategy for Astrophysics Applications, arXiv:1210.0832 [astro-ph.SR] arxiv.org/abs/1210.0832

Abstract
Astrophysics experiments by Falcon et al. to create white dwarf photospheres in the laboratory are currently underway. The experimental platform measures Balmer line profiles of a radiation-driven, pure hydrogen plasma in emission and in absorption for conditions at T_e ~ 1 eV, n_e ~ 10^17 cm^-3. These will be used to compare and test line broadening theories used in white dwarf atmosphere models. The flexibility of the platform allows us to expand the direction of our experiments using other compositions. We discuss future prospects such as exploring helium plasmas and carbon/oxygen plasmas relevant to the photospheres of DBs and hot DQs, respectively.

Related Stories

Feuding helium dwarfs exposed by eclipse

May 24, 2011

Researchers at the University of Warwick have found a unique feuding double white dwarf star system where each star appears to have been stripped down to just its helium.

Binary white dwarf stars

May 04, 2011

(PhysOrg.com) -- When a star like our sun gets to be very old, after another seven billion years or so, it will no longer be able to sustain burning its nuclear fuel.

Earthly machine recreates star's sizzling-hot surface

Jan 13, 2012

Since we can't go to the stars yet, let's bring the stars to us. In a giant X-ray-producing facility, astronomers and plasma physicists have heated a cigar-sized sample of gas to over 17,000 degrees Fahrenheit ...

Two dying stars reborn as one (w/ video)

Apr 06, 2011

White dwarfs are dead stars that pack a Sun's-worth of matter into an Earth-sized ball. Astronomers have just discovered an amazing pair of white dwarfs whirling around each other once every 39 minutes. This ...

Habitable planets and white dwarfs

Mar 22, 2011

(PhysOrg.com) -- The search for habitable planets similar to Earth has routinely focused around active nuclear burning stars. However, in a recently published paper by Eric Agol from the University of Washington, ...

Recommended for you

And so they beat on, flagella against the cantilever

Sep 16, 2014

A team of researchers at Boston University and Stanford University School of Medicine has developed a new model to study the motion patterns of bacteria in real time and to determine how these motions relate ...

Tandem microwave destroys hazmat, disinfects

Sep 16, 2014

Dangerous materials can be destroyed, bacteria spores can be disinfected, and information can be collected that reveals the country of origin of radiological isotopes - all of this due to a commercial microwave ...

Cornell theorists continue the search for supersymmetry

Sep 16, 2014

(Phys.org) —It was a breakthrough with profound implications for the world as we know it: the Higgs boson, the elementary particle that gives all other particles their mass, discovered at the Large Hadron ...

How did evolution optimize circadian clocks?

Sep 12, 2014

(Phys.org) —From cyanobacteria to humans, many terrestrial species have acquired circadian rhythms that adapt to sunlight in order to increase survival rates. Studies have shown that the circadian clocks ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

cantdrive85
1 / 5 (3) Oct 15, 2012
It's no coincidence that these researchers are using plasma and electricity to create these stars, it's the same thing mother nature does.
A2G
1 / 5 (2) Oct 15, 2012
Cantdrive85, Would you please stop using logic. It is not appreciated on this "science" site.