Predicting protein binding sites on DNA

Oct 15, 2012
Predicting protein binding sites on DNA
Credit: Thinkstock

In silico prediction of protein folding has the potential to reveal the specificity of a given protein sequence for DNA. Such methods are particularly promising as they could open the road to the rational design of novel regulatory molecules.

Studying the specificity of protein-DNA interactions has important ramifications for the analysis and prediction of the gene regulatory networks that govern several crucial biological processes. Approaches that rely on the are becoming increasingly promising since they can predict previously undetected binding sites.

The European 'Inferring DNA binding specificities through in silico folding of natively unstructured protein regions' (PROTDNABINDSPEC) project aimed at expanding our current knowledge of protein-DNA binding modes. The plan was to use structural bioinformatics methods in order to predict the structure and specificity of DNA-binding proteins, focusing on natively unfolded protein regions. Such regions consist of flexible segments that do not assume a fixed conformation in the native state, but fold upon binding.

To achieve this, scientists modelled the interaction energy between different amino acids and nucleotides. These statistical potentials were integrated into Fragfold, one of the first fragment-based platforms for molecule fold prediction. The generated complexes would be used to predict DNA binding sites in genomes.

The results of the PROTDNABINDSPEC project are expected to improve our understanding of macromolecular interactions, enabling the annotation of genomic sequences and assisting future research in .

Explore further: Tarantula toxin is used to report on electrical activity in live cells

add to favorites email to friend print save as pdf

Related Stories

Common mechanisms for viral DNA replication

Jan 23, 2007

How DNA replicates is a critical question for understanding life. DNA replication remains difficult to investigate in eukaryotes,where it occurs within the confines of the double-membrane nucleus.

Protein folding made easy

Jun 07, 2011

Protein folding has nothing to do with laundry. It is, in fact, one of the central questions in biochemistry. Protein folding is the continual and universal process whereby the long, coiled strings of amino ...

Gene-bender proteins may sway to DNA

Dec 04, 2006

Among the many genes packed into each cell of our body, those that get turned on, or expressed, are the ones that make us who we are. Certain proteins do the job of regulating gene expression by clasping onto key spots of ...

Recommended for you

Scientists see how plants optimize their repair

12 hours ago

Researchers led by a Washington State University biologist have found the optimal mechanism by which plants heal the botanical equivalent of a bad sunburn. Their work, published in the Proceedings of the Na ...

Structure of an iron-transport protein revealed

18 hours ago

For the first time, the three dimensional structure of the protein that is essential for iron import into cells, has been elucidated. Biochemists of the University of Zurich have paved the way towards a better ...

Over-organizing repair cells set the stage for fibrosis

19 hours ago

The excessive activity of repair cells in the early stages of tissue recovery sets the stage for fibrosis by priming the activation of an important growth factor, according to a study in The Journal of Ce ...

User comments : 0