Light propagation on a chip like shopping before christmas

Oct 30, 2012
Light propagation on a chip like shopping before christmas
(a) Light traveling through the periodic medium. (b) Light becoming trapped inside the medium at the encircled area. Credit: University of Twente

A team of scientists at the MESA+ Institute of Nanotechnology, the Niels Bohr Institute, and the FOM institute AMOLF have demonstrated that light becomes trapped in even state-of-the-art on-chip waveguides by the tiny amount of disorder that is always present.

The used methods provide direct information where and why light becomes trapped. These results are important for quantifying the influence of disorder on on-chip-structures and have direct impact for our understanding of semiconductors and light transport in integrated . The results are being published in the leading American journal Physical Review B. It turns out that light propagates in an integrated waveguide like people shopping on a busy day before Christmas.

"Passing through a shopping street can be tedious, especially on a busy day just before Christmas. With a steady pace you can make it through in a reasonable time, but the slower you walk, the higher the chance that you are diverted by not-to-miss offers." MESA+ researcher Pepijn Pinkse explains that this example illustrates what happens when light propagates in a nanostructure. Under normal conditions the propagation of light is strongly affected by the periodic order of the . Energy gaps emerge where light is not allowed to propagate as a result of interference. The boundary between an and energies where light can still propagate is called the band edge. Light near the band edge travels at a lower velocity. Slowly propagating light enhances the sensitivity of nanoscale and is of interest for controlling optical information. However, even the smallest amount of disorder in a structure, which is fundamentally unavoidable, significantly alters the transport of light near the band edge. Up till now, it has been a major challenge to directly measure this effect.

Pinkse's team of scientists have studied light transport in integrated nanophotonic waveguides. They have completely measured the energy-dependent transport properties of these nanostructures near the band edge. "We make a complete energy-space map to show the propagating waves and the positions and energies where light is trapped." Even for state-of-the-art periodic structures, the scientists observed that the band edge is not a sharp boundary anymore. The band edge becomes an energy range where light waves travel slower and sometimes become even trapped. The probability to get trapped increases when the waves travel slower. "In fact, the results are not limited to waves, but are valid for wave propagation in general. We can now directly observe the interplay between trapped waves and slowly traveling waves with the newest microscopy methods developed by MESA+." To come back to the analogy of the shopping street, if you are more and more fascinated by the incredible sales offers, you might end up being trapped in one of the attractive shops.

The paper is entitled "Measurement of a Band-Edge Tail in the Density of States of a Photonic-Crystal " and is being published in Physical Review B.

Explore further: New insights found in black hole collisions

add to favorites email to friend print save as pdf

Related Stories

New diffraction phenomenon observed and explained

Feb 28, 2012

'Sub-Bragg diffraction' is what researchers at the Complex Photonic Systems group of the University of Twente’s MESA+ Institute for Nanotechnology call their surprising observations. An ‘energy dip’ ...

Rainbow trapping in light pulses

Jul 14, 2010

Over the past decade, scientists have succeeded in slowing pulses of light down to zero speed by letting separate frequency components of the pulse conspire in such a way that a receptive medium through which the pulse is ...

Researchers glimpse the inside of a photonic crystal

Oct 02, 2012

(—While today's smart phones, tablets, and other small electronic devices rely on electrical data connections, in the future they may use optical connections in order to become even faster and ...

Recommended for you

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Oct 30, 2012
Could this help solar panels somehow by helping the, absorb more light by slowing down it down?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.