Living power cables discovered

Oct 24, 2012

A multinational research team has discovered filamentous bacteria that function as living power cables in order to transmit electrons thousands of cell lengths away.

The Desulfobulbus , which are only a few thousandths of a millimeter long each, are so tiny that they are invisible to the naked eye. And yet, under the right circumstances, they form a multicellular filament that can transmit electrons across a distance as large as 1 centimeter as part of the filament's respiration and ingestion processes.

The discovery by scientists at Aarhus University in Denmark and USC will be published in Nature on October 24.

"To move electrons over these enormous distances in an entirely would have been thought impossible," said Moh El-Naggar, assistant professor of physics at the USC Dornsife College of Letters, Arts and Sciences, and co-author of the Nature paper.

Aarhus scientists had discovered a seemingly inexplicable on the years ago. The new experiments revealed that these currents are mediated by a hitherto unknown type of long, multicellular bacteria that act as living power cables

"Until we found the cables we imagined something cooperative where electrons were transported through external networks between different bacteria. It was indeed a surprise to realize, that it was all going on inside a single organism," said Lars Peter Nielsen of the Aarhus Department of Bioscience, and a corresponding author of the Nature paper.

The team studied bacteria living in that power themselves by oxidizing hydrogen sulfide. Cells at the bottom live in a zone that is poor in oxygen but rich in hydrogen sulfide, and those at the top live in an area rich in oxygen but poor in .

The solution? They form long chains that transport individual electrons from the bottom to the top, completing the chemical reaction and generating life-sustaining energy.

"You have feeder cells on one end and breather cells on the other, allowing the whole living cable to survive," El-Naggar said.

Aarhus and USC researchers collaborated to use physical techniques to evaluate the long-distance electron transfer in the filamentous bacteria. El-Naggar and his colleagues had previously used scanning-probe microscopy and nanofabrication methods to describe how use nanoscale structures called "bacterial nanowires" to transmit electrons many body lengths away from cells.

"I'm a physicist, so when I look at remarkable phenomena like this, I like to put it into a quantifiable process," El-Naggar said.

El-Naggar, who was just chosen as one of the Popular Science Brilliant 10 young scientists for his work in biological physics, said physicists are increasingly being tapped to tackle tough biological questions.

"This world is so fertile right now," he said. "It's just exploding."

Explore further: Top Japan lab dismisses ground-breaking stem cell study

Related Stories

Live cables explain enigmatic electric currents

Oct 24, 2012

Researchers at Aarhus University, Denmark, made a sensational discovery almost three years ago when they measured electric currents in the seabed. It was unclear as to what was conducting the current, but ...

New Bacterial Behavior Discovered

Dec 15, 2009

(PhysOrg.com) -- Bacteria dance the electric slide, officially named electrokinesis by the USC geobiologists who discovered the phenomenon.

Progress Toward a Biological Fuel Cell?

Dec 30, 2008

(PhysOrg.com) -- Biological fuel cells use enzymes or whole microorganisms as biocatalysts for the direct conversion of chemical energy to electrical energy. One type of microbial fuel cell uses anodes (positive electrodes) ...

Recommended for you

Top Japan lab dismisses ground-breaking stem cell study

Dec 26, 2014

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

Scrapie could breach the species barrier

Dec 24, 2014

INRA scientists have shown for the first time that the pathogens responsible for scrapie in small ruminants (prions) have the potential to convert the human prion protein from a healthy state to a pathological ...

Extracting bioactive compounds from marine microalgae

Dec 24, 2014

Microalgae can produce high value health compounds like omega-3s , traditionally sourced from fish. With declining fish stocks, an alternative source is imperative. Published in the Pertanika Journal of Tr ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

LariAnn
1.5 / 5 (2) Oct 24, 2012
Such tiny filaments - I wouldn't call them "cables" unless you are looking from the point of view of an electron! Nanowires is a far more fitting description.
nuge
not rated yet Oct 25, 2012
LariAnn, I can assure you that from an Electrical Engineering theory perspective, a cable is any conductor with non-zero length.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.