Pond skating insects reveal water-walking secrets

Oct 31, 2012

This month's special issue of Physics World is devoted to animal physics, and includes science writer Stephen Ornes explanation of how s effortlessly skip across water leaving nothing but a small ripple in their wake.

As Ornes writes, our current understanding of the mechanisms adopted by the pond skater is down to the efforts of David Hu, who as a mathematics graduate from the Massachusetts Institute of Technology spent four years studying their behaviour.

Hu, along with his PhD supervisor John Bush, found that pond skaters use the middle of their three pairs of legs to "row" across the water. When a rowing boat's oar slices the water, it creates swirling vortices just beneath the surface that twist away from the boat and move it forwards – the same vortices are created by that cover the pond skater's legs.

The hairs are the only part of the insect's body that penetrate the water and are covered in a waxy substance that keeps water out by allowing bubbles to attach to them. The hairs have subsequently drawn the attention of looking for a permanent waterproofing material that doesn't wash off.

The pond skater (also known as the water strider) is one of a tiny proportion of insects – around 0.1 per cent – that are able to stand and move on water. They stay afloat thanks to their small weight and the surface tension of water acting like a skin; however, according to Newton's third law of motion, the pond skater must push against something to move forward, which is fairly tricky when the only thing available is water.

Previous theories had suggested that pond skaters created tiny ripples – known as "capillary waves" – with their legs which subsequently propelled them across water, but as biologist Mark Denny pointed out in 1993, this couldn't be the case as infant pond skaters cannot move their legs faster than the phase speed of the capillary waves – a feat necessary to create them.

Hu and Bush came to their conclusions by filming a group of pond skaters using high-speed cameras as they moved across a body of filled with colourful floating particles – this helped identify the swirling vortices that were being created.

Explore further: The birth of topological spintronics

Related Stories

It's a bug's life: MIT team tells moving tale

Sep 28, 2005

MIT mathematicians have discovered how certain insects can climb what to them are steep, slippery slopes in the water's surface without moving their limbs -- and do it at high speed.

New ponds take the waste out of wastewater

Aug 01, 2011

Research by Flinders University’s School of the Environment has shown that a shallow, high-rate pond system to treat wastewater will slash the loss to evaporation as well as boosting the rates of removal of bacterial ...

New study suggests how toads might predict earthquakes

Dec 02, 2011

The trouble with earthquakes, other than their obvious devastation, is that thus far they have proved to be very nearly impossible to predict, despite considerable effort towards that goal; being able to do ...

Solving another mystery of an amazing water walker

Dec 10, 2007

Walking on water may seem like a miracle to humans, but it is a ho-hum for the water strider and scientists who already solved the mystery of that amazing ability. Now researchers in Korea are reporting a ...

Recommended for you

IHEP in China has ambitions for Higgs factory

15 hours ago

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

The physics of lead guitar playing

16 hours ago

String bends, tapping, vibrato and whammy bars are all techniques that add to the distinctiveness of a lead guitarist's sound, whether it's Clapton, Hendrix, or BB King.

The birth of topological spintronics

17 hours ago

The discovery of a new material combination that could lead to a more efficient approach to computer memory and logic will be described in the journal Nature on July 24, 2014. The research, led by Penn S ...

The electric slide dance of DNA knots

21 hours ago

DNA has the nasty habit of getting tangled and forming knots. Scientists study these knots to understand their function and learn how to disentangle them (e.g. useful for gene sequencing techniques). Cristian ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Gifted_Idiot
not rated yet Nov 01, 2012
How can they come to this deduction? If I had 40 foot oars on a rowboat, there would be no vortices under the boat to propel it. My theory is that the insect is light enough that using Newton's third law of motion ( For every action there is an equal and opposite reaction ), the action of the insect's legs pushing against the water is propelling the insect across the water in the same way the oar pushes the boat through the water. The notion of vortices is rediculous.