Pitt engineers to design affordable CO2 thickener to augment oil extraction

October 16, 2012

Crude oil extraction could be improved significantly and accessible domestic oil reserves could be expanded with an economical CO2 thickener being developed by University of Pittsburgh engineers, thanks to a $1.3 million grant from the U.S. Department of Energy.

Current oil-extraction methods across the United States involve oil being "pushed" from underground layers of porous sandstone or limestone reservoirs using a first-water-then- method known as the water-alternating-gas method. CO2—which is obtained from natural CO2 reservoirs and pipelined to oil reservoirs—is an ideal candidate for given its ability to push and dissolve oil from underground layers of . However, its viscosity (or thickness) is too low to efficiently extract oil. As such, it tends to "finger" through the oil rather than sweep oil forward toward the production well. This process, "viscous fingering," results in companies recovering only a small fraction of the oil that's in a field.

During the late 1990s, a team at Pitt was the first to demonstrate that it was possible to design additives that could greatly enhance CO2's viscosity at low concentrations, although the compounds were both costly and environmentally problematic.

"The thickeners we developed years ago were too expensive for wide use," said principal coinvestigator Eric Beckman, George M. Bevier Professor of Engineering in Pitt's Swanson School of Engineering. "So, in this proposal, we're looking at designing candidates that can do the job at a reasonable cost."

Beckman and Robert Enick, principal coinvestigator and Bayer Professor and Vice Chair for Research in Pitt's Department of Chemical and , intend to build upon earlier Pitt models of CO2 thickeners, but this time with a more affordable design that could cost only several dollars per pound. Ideally, their small molecule thickener would be able to increase the viscosity of pure CO2 100 times—something that hasn't previously been accomplished.

"An affordable CO2 thickener would represent a transformational advance in enhanced oil recovery," said Enick. "More than 90 percent of CO2 injection projects in the U.S. employ the WAG method to hinder the fingering of the CO2. However, if a thickener could be identified that could increase the of the CO2 to a value comparable to that of the oil in the underground layers of rock, then the fingering would be inhibited, the need to inject water would be eliminated, and more oil would be recovered more quickly using less CO2."

"It's clear there exists a very wide market for this type of CO2 thickener," said Beckman. "It's been long recognized as a game-changing transformative technology because it has the potential to increase recovery while eliminating water injection altogether."

Explore further: Carbon sequestration field test begins

Related Stories

Carbon sequestration field test begins

May 16, 2007

The U.S. Department of Energy says its Midwest Geological Sequestration Consortium has started its first enhanced oil recovery field test in Illinois.

Underground CO2 storage study to begin

October 25, 2007

The University of Texas has received a $38 million subcontract to conduct the first U.S. long-term study of underground carbon dioxide storage.

Carbon study could help reduce harmful emissions

February 14, 2008

Earth scientists at The University of Manchester have found that carbon dioxide has been naturally stored for more than a million years in several gas fields in the Colorado Plateau and Rocky Mountains of the United States.

Discovering oil at micro level

November 3, 2011

(PhysOrg.com) -- Getting trapped oil out of porous layers of sandstone and limestone is a tricky and costly operation for energy exploration companies the world over. But now, University of Alberta researchers have developed ...

Use of microfluidic chips a first in bitumen-gas analysis

February 29, 2012

A University of Toronto research team has developed a process to analyze the behavior of bitumen in reservoirs using a microfluidic chip, a tool commonly associated with the field of medical diagnostics. The process may reduce ...

Recommended for you

Horn of Africa drying ever faster as climate warms

October 9, 2015

The Horn of Africa has become increasingly arid in sync with the global and regional warming of the last century and at a rate unprecedented in the last 2,000 years, according to new research led by a University of Arizona ...

Could 'The Day After Tomorrow' happen?

October 9, 2015

A researcher from the University of Southampton has produced a scientific study of the climate scenario featured in the disaster movie 'The Day After Tomorrow'.

Image: Sentinel-1A captures Azore islands

October 9, 2015

This Sentinel-1A radar image was processed to depict water in blue and land in earthen colours. It features some of the Azore islands about 1600 km west of Lisbon, including the turtle-shaped Faial, the dagger-like Sao Jorge ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Oct 16, 2012
I appluad government funded research like this that is directed towards finding PRACTICAL things we can do in the short and medium term to address the energy/climate issue. Hopefully people from all sides of this issue feel likewise.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.