Physicists investigate the cause of striped patterns formed by fine particles deposited on surfaces

October 22, 2012

Patterns fascinate. Particularly stripes. Found in nature in zebras, they are also found in the most unlikely places, such as powdered drugs' mixing vessel walls. In an article about to be published in the European Physical Journal E, Nirmal Thyagu and his colleagues from Rutgers University, New Jersey, USA, propose a traffic model to predict the formation of different patterns, ranging from stripes to spots.

Thanks to simulations, Thyagu and colleagues showed the underlying stripe formation mechanism, which they propose stems from traffic-like jams, whereby particles move more slowly when surrounded by other particles. This revealed three distinct patterns of how "sticking" can occur. These include stripe formation, clearing of surfaces between stripes, sharpening lead edges of the stripes, and stripe-to-spot transitions. These results were subsequently confirmed through experiments.

What is more, the authors found, striped patterns invariably form, provided that the is in a range between 40 and 60%, and the tumbler surface is sufficiently rough enough to give hold to an initial layer.

Striped patterns formed by particles limit micro-patterned circuit size in electronics, inhaled medicines' effectiveness and polymer manufacturing efficiency. These patterns also adversely affect pharmaceutical manufacturing, as stripes appear on the walls of mixing vessels used for the production of powdered drugs.

More specifically, the authors also showed that can preferentially stick to mixing vessels' walls, and can carry as much as twice the concentration of active ingredients. As a result, the bulk powder used for tablets is less concentrated than it should be, or can be too concentrated if the highly concentrated material falls back into the bulk. Research focusing on how the effect carries over when scaling up to pilot- and full-scale manufacturing is currently underway.

Explore further: Looking for 'Stripes' in High-Tc superconductors

More information: N. N. Thyagu, A. Vasilenko, A. Voyiadjis, B. J. Glasser, T. Shinbrot (2012), Stuck in traffic: patterns of powder adhesion, European Physical Journal E 35:105, DOI: 10.1140/epje/i2012-12105-y

Related Stories

Looking for 'Stripes' in High-Tc superconductors

March 7, 2007

In LBCO, as in all materials, negatively charged electrons repel one another. But by trying to stay as far apart as possible, each individual electron is confined to a limited space, which costs energy. To achieve a lower-energy ...

Study shows how the zebrafish gets his stripe

September 25, 2007

Scientists have discovered how the zebrafish (Danio rerio) develops one of its four stripes. Their findings add to the growing list of tasks carried out by an important molecule that is involved in the arrangement of everything ...

'Writing' Patterns on Carbon Nanotubes With Polymer Chains

May 19, 2009

(PhysOrg.com) -- Carbon nanotubes are at the center of the nanoelectronics research movement, with scientists making great progress toward getting nanotube-based electronic devices into the hands of consumers. But one area ...

How the zebra got its stripes

February 9, 2012

If there was a 'Just So' story for how the zebra got its stripes, I'm sure that Rudyard Kipling would have come up with an amusing and entertaining camouflage explanation. But would he have come up with the explanation that ...

Alan Turing's 1950s tiger stripe theory proved

February 19, 2012

Researchers from King's College London have provided the first experimental evidence confirming a great British mathematician's theory of how biological patterns such as tiger stripes or leopard spots are formed.

Cells: The body's ultimate sports car

March 15, 2012

(PhysOrg.com) -- Anand Asthagiri can think of several reasons why a scientist would want to get behind the wheel of a cell — which he calls the “ultimate driving machine.” Having the ability to move a cell ...

Recommended for you

Seeing quantum motion

August 28, 2015

Consider the pendulum of a grandfather clock. If you forget to wind it, you will eventually find the pendulum at rest, unmoving. However, this simple observation is only valid at the level of classical physics—the laws ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.