Physicists reveal first images of Landau levels

October 1, 2012
First images of Landau levels revealed
This shows experimentally measured Landau Level 1. Credit: University of Warwick

Physicists have directly imaged Landau Levels – the quantum levels that determine electron behaviour in a strong magnetic field – for the first time since they were theoretically conceived of by Nobel prize winner Lev Landau in 1930.

Using scanning tunnelling spectroscopy - a spatially resolved probe that interacts directly with the electrons - scientists at institutions including the University of Warwick and University have revealed the internal ring-like structure of these Landau Levels at the surface of a semiconductor.

The experimental challenge in the work was to have sufficient in order to overcome the intrinsic disorder in the material which usually only allows the observation of smeared out "drift" states.

The images clearly show that Landau was right when he predicted that, in a clean system, the electrons would take on the form of concentric rings, the number of which increase according to their .

First images of Landau levels revealed
This shows numerically simulated Landau Level 1. Credit: University of Warwick

This simple counting behaviour forms the basis of the so-called .

While originally of mostly fundamental interest, the effect has in recent years been used to define the standard for what we mean by and could soon be employed to define the kilogram as well.

Professor Rudolf Roemer of the Department of Physics at the University of Warwick said: "This is an exciting step for us, we are really seeing for the first time individual quantum mechanical wave functions of electrons in real materials.

"On the face of it this might seem far removed from everyday life.

"However the question of what defines a kilogram is currently being debated, with the spacing between the rings of these Landau levels acting as a kind of marker for a universal weight.

"So next time you measure out your sugar to bake a cake, you might unknowingly be making use of these quantum rings."

The research, Robust Nodal Structure of Landau Level Wave Functions Revealed by Fourier Transform Scanning Tunneling Spectroscopy, was published in the journal Physical Review Letters.

Explore further: Observing the Quantum Hall Effect in 'Real' Space

More information: Citation: Phys. Rev. Lett. 109, 116805 (2012)

Related Stories

Observing the Quantum Hall Effect in 'Real' Space

January 12, 2009

(PhysOrg.com) -- When water transforms into steam, or magnetized iron changes to demagnetized iron, Katsushi Hashimoto explains to PhysOrg.com, a phase transition is taking place: “Classical phase transitions…often share ...

Redefining the kilogram and the ampere

September 29, 2011

New research using graphene presents the most precise measurements of the quantum Hall effect ever made, one of the key steps in the process to redefine two SI units.

Recommended for you

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

Study calculates the speed of ice formation

August 3, 2015

Researchers at Princeton University have for the first time directly calculated the rate at which water crystallizes into ice in a realistic computer model of water molecules. The simulations, which were carried out on supercomputers, ...

Small tilt in magnets makes them viable memory chips

August 3, 2015

University of California, Berkeley, researchers have discovered a new way to switch the polarization of nanomagnets, paving the way for high-density storage to move from hard disks onto integrated circuits.

Scientists bring order, and color, to microparticles

August 3, 2015

A team of New York University scientists has developed a technique that prompts microparticles to form ordered structures in a variety of materials. The advance, which appears in the Journal of the American Chemical Society ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Tausch
1 / 5 (1) Oct 02, 2012
The experimental and the numerically simulated Landau levels display differences.
Are the differences insignificant or attributed to insignificance factors?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.