Penn researcher part of $1.5 million grant to reduce gene sequencing costs

Oct 15, 2012
Photograph of the amplifier chip, attached to a circuit board with thin gold wirebonds. Credit: Columbia Engineering

A collaboration between researchers at Columbia University and Marija Drndić of the University of Pennsylvania has been awarded a three-year, $1.5 million grant for a project aimed at reducing the cost of genome sequencing. The grant was made by the National Human Genome Research Institute, part of the National Institutes of Health.

Drndić is an associate professor in the Department of Physics and Astronomy in Penn's School of Arts and Sciences.

During the past decade, DNA sequencing costs have fallen dramatically, fueled by tools, technologies and process improvements developed by genomics researchers.

Price, however, is still one hurdle in the widespread use of genomics in research and clinical care. Speed and accuracy are among other factors. The grants, made through the NHGRI's Advanced DNA Sequencing Technology Program and totaling $19 million between six groups, will attempt to address all of these challenges.

"We can now access data we could not dream of getting in 2004 when we started this program; tens of thousands of human genome sequences have been generated," said NHGRI director Eric D. Green. "And yet, the information we would truly like to get for understanding disease and, eventually, for treating patients, requires much better quality sequence data. That is the direction we would like to go with these grants."

Nanopores under magnification.

Drndić's approach to involves a process known as nanopore translocation, in which the DNA is threaded through a tiny hole. The elements, or bases, of a DNA sequence block different amounts of the aperture as they pass through, enabling the nanopore to emit a different signal for each base.

But the signals from nanopores are very weak, so it is critically important to measure as cleanly as possible. Collaborating with a research team led by Columbia's Ken Shepard, Drndić miniaturized the measurement by designing a custom-integrated circuit using commercial , building the nanopore measurement around the new amplifier chip. Their research was published in the journal Nature Methods.

"While most groups were trying to slow down DNA, our approach was to build faster electronics," Drndić said. "We combined the most sensitive electronics with the most sensitive solid-state nanopores."

The NHGRI grant will help advance the study of this technique and provide for new equipment, which in turn will help improve the speed and accuracy of the group's sequence measurements. 

Drndić is also the recipient of a 2011 NHGRI/NIH for related work on using graphene nanopore translocation.

Explore further: Improving the productivity of tropical potato cultivation

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Deadly human pathogen Cryptococcus fully sequenced

8 hours ago

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Building better soybeans for a hot, dry, hungry world

Apr 16, 2014

(Phys.org) —A new study shows that soybean plants can be redesigned to increase crop yields while requiring less water and helping to offset greenhouse gas warming. The study is the first to demonstrate ...

User comments : 0

More news stories

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Chronic inflammation linked to 'high-grade' prostate cancer

Men who show signs of chronic inflammation in non-cancerous prostate tissue may have nearly twice the risk of actually having prostate cancer than those with no inflammation, according to results of a new study led by researchers ...