NMSU graduate student looks for indications of life on Mars in possible trace methane gas

Oct 23, 2012 by Audry Olmsted

An astronomy graduate student at New Mexico State University is looking for possible signs of life on Mars by studying the possible detection of methane gas on the planet.

Malynda Chizek is working on using the NASA/Ames Mars Atmospheric General Circulation Model to replicate trace gases in the . She is using these simulations to predict the amount of methane that might be seen by the Laboratory.

"There is an instrument onboard the Curiosity Rover – which landed on Mars in August – capable of measuring methane, but the scientists operating that instrument haven't made any public announcements of their results yet," said Chizek. "There have been several claims of methane detection in the past decade, but it is controversial whether or not there is really methane on Mars, because we do not understand how it would get there and scientists' observations suggest that it's varying in abundance on a very quick time scale, which is unexpected."

The significance of detecting methane on Mars is exciting, Chizek said, because it could lead to evidence of life. Approximately 95 percent of the methane in Earth's atmosphere is a product of biology.

To help people understand the volume and significance of methane on Mars, Chizek uses a very Earthly creature that produces the gas – cows.

"In a couple of my presentations, I show how many cows would be required to equal the amount of methane that astronomers have observed on Mars," she said. "Depending on which observations I am looking at, that number is close to five million cows, or roughly 200,000 tons of methane production per year."

Researchers are using telescopes on Earth and spacecraft in orbit around Mars to observe methane on Mars.

The Earth-based observations are considered controversial because Earth's atmosphere has a significant amount of methane, a factor of 100 to 1,000 times higher than what the published Martian methane detections have stated, which may interfere with detection of the Martian methane signal. The instruments on spacecraft orbiting Mars used for methane detections have a lower methane detection capability than do the Earth-based instruments. Some scientists consider the orbiting instruments to be inadequate for detecting Martian methane, Chizek said.

Chizek said she is using her model to try and trace back the detected methane to its source location to see if it is coming from something like a volcanic source, water surface chemistry interaction or bacteria living on or near the surface.

"Mars is thought to be a geologically dead planet," she said. "If the methane detections are confirmed, and we do not find any signs of bacterial life, this means there are likely some interesting geological processes happening on Mars that we don't yet know about."

Jim Murphy, Chizek's adviser, said some of the recent observations of Mars' atmosphere, which suggest that methane might be present there, also suggest that there are substantial seasonal variations in the quantity of methane.

"These variations are unexpected since methane is expected to persist for hundreds of years within the atmosphere if it is introduced in to the atmosphere, and since the variations would imply substantial sources being currently active, such as life or a chemistry of some sort," he said.

Even if there are not any currently active sources of methane on Mars, and even if the "too rapid loss" of methane suggested by the recent observations is incorrect, Curiosity could still possibly detect methane being present in very small amounts.

In such a situation, Chizek's computer simulation results still suggest that Curiosity should see some seasonal variations in its local methane abundance since gases like methane become concentrated within the high latitudes of the winter hemisphere as the main atmospheric gas, carbon dioxide, "freezes out" of the atmosphere and forms a winter polar ice cap.

Chizek is now finishing simulations of her observations and is completing a paper on the topic co-authored by Murphy, an associate professor of astronomy, and former NMSU student Melinda Kahre. Kahre now works at the NASA Ames Research Center.

Chizek's work is funded by a previously awarded $15,000 Space Grant fellowship. Chizek, who plans to complete her doctorate in 2013, is using her Mars research for her dissertation.

"I am now providing predictions on what Mars Science Laboratory scientists might see, based on the other past observations," she said. "More confirmation will come from MSL itself when it eventually announces whether or not it has observed and what sort of variations it might or might not have seen."

"This research is important to NMSU by virtue of it being the work of a graduate student, as well as placing NMSU in the position to provide substantial value to ongoing U.S. -exploration efforts," said Murphy. "We want our students and faculty to be involved in leading-edge science studies, and this effort of Malynda is one such effort. Conducting investigations to aid in the interpretation of data/measurements is a cornerstone of science, and this research is a very good example of the work required to understand what available data are trying to tell us."

Explore further: Astronaut salary

add to favorites email to friend print save as pdf

Related Stories

Mars methane linked to meteorites

May 31, 2012

Tiny amounts of methane in the Martian atmosphere may come not from living things, but from meteorites on the red planet's surface, the latest findings suggest.

Mars methane lasts less than a year

Sep 21, 2010

A new study indicates that methane in the atmosphere of Mars lasts less than a year. Methane is replenished from localized sources that show seasonal and annual variations. This pattern of methane production ...

Life on Mars theory boosted by new methane study

Dec 08, 2009

Scientists have ruled out the possibility that methane is delivered to Mars by meteorites, raising fresh hopes that the gas might be generated by life on the red planet, in research published tomorrow in Earth an ...

Recommended for you

Astronauts to reveal sobering data on asteroid impacts

20 minutes ago

This Earth Day, Tuesday, April 22, three former NASA astronauts will present new evidence that our planet has experienced many more large-scale asteroid impacts over the past decade than previously thought… ...

Rosetta instrument commissioning continues

1 hour ago

We're now in week four of six dedicated to commissioning Rosetta's science instruments after the long hibernation period, with the majority now having completed at least a first initial switch on.

Astronaut salary

1 hour ago

Talk about a high-flying career! Being a government astronaut means you have the chance to go into space and take part in some neat projects—such as going on spacewalks, moving robotic arms and doing science ...

Red moon at night; stargazer's delight

20 hours ago

Monday night's lunar eclipse proved just as delightful as expected to those able to view it. On the East Coast, cloudy skies may have gotten in the way, but at the National Science Foundation's National Optical ...

Meteorites yield clues to Martian early atmosphere

23 hours ago

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Oct 23, 2012
If seasonal variations in methane concentration are an accurate reflection of what is occurring on Mars, I'd think this argues strongly in favor of some kind of biological activity. Other than precipitation of frozen CO2 or evaporation of such, I don't see another reason for a SEASONAL variation in the concentration of a gas such as methane. Geological sources should not be seasonal. In a case like permafrost melting on Earth, biological processes are/were still the original source of the methane that is released seasonally.
not rated yet Oct 23, 2012
What about seasonal melting of methane hydrates? Here the methane could be of geological origin and over countless aeons has become trapped and accumulated in the water ice of the permafrost payer.
not rated yet Oct 23, 2012
It is most probable that some methane is incorporated into the ice caps as they form in winter.

More news stories

Rosetta instrument commissioning continues

We're now in week four of six dedicated to commissioning Rosetta's science instruments after the long hibernation period, with the majority now having completed at least a first initial switch on.

A sharp eye on Southern binary stars

Unlike our sun, with its retinue of orbiting planets, many stars in the sky orbit around a second star. These binary stars, with orbital periods ranging from days to centuries, have long been the primary ...

Hubble image: A cross-section of the universe

An image of a galaxy cluster taken by the NASA/ESA Hubble Space Telescope gives a remarkable cross-section of the Universe, showing objects at different distances and stages in cosmic history. They range ...

Astronaut salary

Talk about a high-flying career! Being a government astronaut means you have the chance to go into space and take part in some neat projects—such as going on spacewalks, moving robotic arms and doing science ...

Tiny power plants hold promise for nuclear energy

Small underground nuclear power plants that could be cheaper to build than their behemoth counterparts may herald the future for an energy industry under intense scrutiny since the Fukushima disaster, the ...

Unraveling the 'black ribbon' around lung cancer

It's not uncommon these days to find a colored ribbon representing a disease. A pink ribbon is well known to signify breast cancer. But what color ribbon does one think of with lung cancer?