Neutron experiments give unprecedented look at quantum oscillations

Oct 23, 2012
This shows a "nearly ideal realization" of a physics textbook model: Bands of scattered neutrons (colors at top) correspond to energy levels quantized in 50 meV lumps (bottom). Credit: ORNL

Researchers at the Department of Energy's Oak Ridge National Laboratory have found that nitrogen atoms in the compound uranium nitride exhibit unexpected, distinct vibrations that form a nearly ideal realization of a physics textbook model known as the isotropic quantum harmonic oscillator.

In the experiment on the uranium nitride crystal—with each of the light centered in a cage of heavier uranium atoms—neutron scattering at ORNL's (SNS) revealed an unexpected series of distinct and evenly spaced oscillations: The nitrogen atom vibrates like a molecular-level ball on a spring.

"Students of physics are familiar with this idealized quantum 'mass on a spring,' but it is very unexpected to find such a precise literal version of this theoretical model in a real experiment," said Steve Nagler, director of ORNL's Quantum Condensed Matter Division of the Neutron Sciences Directorate and a co-author on the paper, published in the journal Nature Communications.

The researchers were using the intense neutron beams of the SNS to examine the of a single crystal of uranium nitride when they noticed the signatures of quantum oscillations. The researchers' technique—neutron scattering—is a tool commonly used to measure conventional quantized , or "phonon excitations" that occur at low frequencies. The measurements at SNS, however, probed higher frequencies well above the "phonon cutoff".

The new data, obtained using SNS's wide angular-range chopper spectrometer (ARCS) and fine-resolution Fermi chopper spectrometer (SEQUOIA) instruments, revealed up to 10 equally spaced energy levels corresponding to oscillations of individual nitrogen atoms in different quantum states. The team was "astonished" to find this series of high-energy vibrational modes in uranium nitride—particularly in an experiment that originally set out to investigate magnetism in the material.

"We learn about the quantum harmonic oscillator in undergraduate physics courses, but you never believe you will find such a good example in nature," said Adam Aczel, a postdoctoral fellow within the Quantum Condensed Matter Division and lead author on the paper.

Uranium nitride is a material of interest in that it is being considered as a fuel for the next generation of more efficient nuclear power reactors. The phenomena observed at SNS could lend valuable insight into the material's performance and behavior as a nuclear fuel.

The SNS is the world's most powerful pulsed neutron source with a suite of unique, specialized instruments in its scientific user facility for the study of advanced materials. The uranium nitride research team combined data from ARCS and SEQUOIA with computational models to better understand their findings. The crystal of uranium nitride was provided by the Canadian Neutron Beam Centre (CNBC) of the National Research Council of Canada.

Explore further: Physicist demonstrates dictionary definition was dodgy

Related Stories

Recommended for you

Steering chemical reactions with laser pulses

7 hours ago

With ultra-short laser pulses, chemical reactions can be controlled at the Vienna University of Technology. Electrons have little mass and are therefore influenced by the laser, whereas the atomic nuclei ...

Grasp of SQUIDs dynamics facilitates eavesdropping

Apr 22, 2014

Theoretical physicists are currently exploring the dynamics of a very unusual kind of device called a SQUID. This Superconducting Quantum Interference Device is a highly sensitive magnetometer used to measure ...

UK's lead in physics healthy but insecure

Apr 22, 2014

The quantity and quality of scientific papers produced by UK physicists indicates that the UK remains in an elite group of nations contributing at the leading edge of physics research.

User comments : 0

More news stories

Cyber buddy is better than 'no buddy'

A Michigan State University researcher is looking to give exercise enthusiasts the extra nudge they need during a workout, and her latest research shows that a cyber buddy can help.