At the nanoscale, graphite can turn friction upside down

Oct 17, 2012

(Phys.org)—If you ease up on a pencil, does it slide more easily? Sure. But maybe not if the tip is sharpened down to nanoscale dimensions. A team of researchers at the National Institute of Standards and Technology (NIST) has discovered that if graphite (the material in pencil "lead") is sticky enough, as measured by a nanoscale probe, it actually becomes harder to slide a tip across the material's surface as you decrease pressure—the exact opposite of our everyday experience.

Technically, this leads to an effectively "negative ," something that has not been previously seen, according to team leader Rachel Cannara. , Cannara explains, is one of a special class of solids called "lamellar" materials, which are formed from stacks of two-dimensional sheets of atoms. The sheets are graphene, a single-atom-thick plane of that are arranged in a . Graphene has a number of exotic electrical and material properties that make it attractive for micro- and nanoelectromechanical systems with applications ranging from and to resonators and optical switches.

Zhao Deng, a University of Maryland postdoctoral researcher at NIST's Center for Nanoscale Science and Technology, noted some odd data while experimenting on graphite with an (AFM). Deng was measuring the friction forces on the nanoscale tip of an AFM tracking across the graphite as he modified the "stickiness" of the surface by allowing tiny amounts of oxygen to adsorb to the topmost graphene layer.

Theoretical Simulations of Friction Between Graphite and AFM Probe:

video platformvideo managementvideo solutionsvideo player

Deng found that when the adhesive force between the graphene and the stylus became greater than the graphene layer's attraction to the graphite below, reducing the pressure on the stylus made it harder to drag the tip across the surface—a negative differential friction.

Backed by theoretical simulations performed by collaborators from NIST and Tsinghua University in Beijing, Cannara's team found that, after the AFM tip has been pressed into the graphite surface, if the attractive force is high enough, the tip can pull a small localized region of the surface layer of graphene away from the bulk material, like raising a nanoscale bubble from the surface. Pushing that deformation around takes more work than sliding over a flat surface. Therefore, whenever the researchers pressed the AFM tip against the sticky graphite and then tried to pull the two apart, they measured an increase in friction force with a sensitivity in the tens of piconewtons.

"Once we have a complete model describing how these graphene sheets deform under repeated loading and sliding at the nanoscale—which we're working on now—friction force microscopy may be the most direct way to measure the energy that binds these layered materials together. And, since it's nondestructive, the measurement can be performed on working devices," Cannara says. Understanding how the sheets interact with each other and with other parts of a device would help quantify the energy required to produce individual sheets from bulk material, assess device operation, and assist in formulating new structures based on layered materials, she says.

Explore further: Carbon nanoballs can greatly contribute to sustainable energy supply

More information: Z. Deng, A. Smolyanitsky, Q. Li, X.-Q. Feng and R. J. Cannara. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale. Nature Materials. Published online: 14 October 2012 | doi:10.1038/nmat3452

Related Stories

New technique controls graphite to graphene transition

Jul 02, 2012

(Phys.org) -- University of Arkansas physicists have found a way to systematically study and control the transition of graphite, the “lead” found in pencils, to graphene, one of the strongest, lightest ...

Seeing an atomic thickness

May 19, 2011

Scientists from NPL, in collaboration with Linkoping University, Sweden, have shown that regions of graphene of different thickness can be easily identified in ambient conditions using Electrostatic Force ...

Recommended for you

Researchers use oxides to flip graphene conductivity

Jan 26, 2015

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

FastEddy
1 / 5 (1) Oct 19, 2012
This is because at the "nano scale", the graphite (and Graphene) are flaking off, the tearing away of the individual layers of Carbon ... BTW: Bad link to the video?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.