Improving nanometer-scale manufacturing with infrared spectroscopy

Oct 10, 2012
Atomic Force Microscope Infrared Spectroscopy is a nanotechnology-based materials identification technique. Credit: University of Illinois at Urbana-Champaign

One of the key achievements of the nanotechnology era is the development of manufacturing technologies that can fabricate nanostructures formed from multiple materials. Such nanometer-scale integration of composite materials has enabled innovations in electronic devices, solar cells, and medical diagnostics.

While there have been significant breakthroughs in nano-manufacturing, there has been much less progress on that can provide information about nanostructures made from multiple integrated materials. Researchers at the University of Illinois Urbana-Champaign and Anasys Instruments Inc. now report new diagnostic tools that can support cutting-edge nano-manufacturing.

"We have used based (AFM-IR) to characterize polymer nanostructures and systems of integrated polymer nanostructures," said William King, the College of Engineering Bliss Professor in the Department of Mechanical Science and Engineering at the University of Illinois Urbana-Champaign. "In this research, we have been able to chemically analyze polymer lines as small as 100 nm. We can also clearly distinguish different nanopatterned polymers using their infrared as obtained by the AFM-IR technique."

In AFM-IR, a rapidly pulsed infrared (IR) laser is directed on upon a thin sample which absorbs the IR light and undergoes rapid thermomechanical expansion. An AFM tip in contact with the polymer nanostructure resonates in response to the expansion, and this resonance is measured by the AFM.

"While nanotechnologists have long been interested in the manufacturing of integrated nanostructures, they have been limited by the lack of tools that can identify material composition at the nanometer scale." said Craig Prater, co-author on the study and of Anasys Instruments Inc. "The AFM-IR technique offers the unique capability to simultaneously map the nanoscale morphology and perform chemical analysis at the nanoscale."

Explore further: Breakthrough in flexible electronics enabled by inorganic-based laser lift-off

More information: The research, published this month in ACS Nano, is available online at DOI:10.1021/nn302620f

add to favorites email to friend print save as pdf

Related Stories

Magnetic actuation enables nanoscale thermal analysis

Jan 12, 2012

Polymer nano-films and nano-composites are used in a wide variety of applications from food packaging to sports equipment to automotive and aerospace applications. Thermal analysis is routinely used to analyze ...

Researchers measure nanometer scale temperature

Dec 19, 2011

Illinois researchers have developed a new kind of electro-thermal nanoprobe that can independently control voltage and temperature at a nanometer-scale point contact. It can also measure the temperature-dependent ...

A New Way Forward for Nanocomposite Nanostructures

Feb 24, 2010

(PhysOrg.com) -- Scientists at the Naval Research Laboratory and the University of Illinois-Urbana Champaign recently reported a new technique for directly writing composites of nanoparticles and polymers.

Recommended for you

Cooling with the coldest matter in the world

Nov 24, 2014

Physicists at the University of Basel have developed a new cooling technique for mechanical quantum systems. Using an ultracold atomic gas, the vibrations of a membrane were cooled down to less than 1 degree ...

Magnetic fields and lasers elicit graphene secret

Nov 24, 2014

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have studied the dynamics of electrons from the "wonder material" graphene in a magnetic field for the first time. This led to the discovery of ...

New 2-D quantum materials for nanoelectronics

Nov 21, 2014

Researchers at MIT say they have carried out a theoretical analysis showing that a family of two-dimensional materials exhibits exotic quantum properties that may enable a new type of nanoscale electronics.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.