Researchers implement a multi-photon approach in quantum cryptography

Oct 04, 2012

Move over money, a new currency is helping make the world go round. As increasing volumes of data become accessible, transferable and, therefore, actionable, information is the treasure companies want to amass. To protect this wealth, organizations use cryptography, or coded messages, to secure information from "technology robbers." This group of hackers and malware creators increasingly is becoming more sophisticated at breaking encrypted information, leaving everyone and everything, including national security and global commerce, at risk.

But the threat to information breach may be drastically reduced as a result of a technology breakthrough that combines quantum mechanics and cryptography. University of Oklahoma electrical and computer engineering professor Pramode Verma and his colleagues Professor Subhash Kak from Oklahoma State University and Professor Yuhua Chen from the University of Houston have, at the OU-Tulsa College of Engineering labs, demonstrated a for cryptography that offers the potential of unconditional security.

"Unfortunately, all commercial cryptography techniques used today are based on what is known as computational security," Verma said. "This means that as increases, they are increasingly susceptible to brute force and other attacks based on that can recover information without knowing the key to decode the information." Cryptography techniques based on are not susceptible to such attacks under any imaginable condition.

In 2006, Kak postulated a theory known as the three-stage protocol, which relies on the of to ensure hackers can't locate or replicate the information used to transmit information. The first laboratory demonstration of Kak's concept took place at the College of Engineering labs at the OU-Tulsa Schusterman Center. This is an important step toward the widespread adoption of Kak's discovery and may lead to a future in which, Verma said, "Basically, no matter how long or how hard they try, technology robbers can no longer decrypt or hack transmitted information."

This breakthrough has widespread economic and global applications. Quantum cryptography has been used in rare instances, primarily Swiss banks, but is limited by its short transmission distance and slow speed. Verma and his research team's technology demonstration suggest the potential for breaking those barriers.

"As we continue to test this promising method of quantum cryptology, we can demonstrate its value and accelerate the adoption in the business world," Verma said.

The widespread application of quantum cryptology could someday ensure that technology robbers won't be able to break into the information bank.

Explore further: Quantum test strengthens support for EPR steering

add to favorites email to friend print save as pdf

Related Stories

World Cup Security Uses Physics To Thwart Hackers

Jun 21, 2010

South African physicists working to protect data networks at the World Cup hope to provide something that no goalkeeper can promise: perfect defense. They're tapping the laws of physics to prevent hackers ...

Researchers weight safety of quantum cryptology

Mar 31, 2011

Scientists in Belgium and Spain have proved for the first time that new systems of quantum cryptology are much safer than current security systems. The study was published in the journal Nature Communications.

Recommended for you

Atomic trigger shatters mystery of how glass deforms

Oct 18, 2014

Throw a rock through a window made of silica glass, and the brittle, insulating oxide pane shatters. But whack a golf ball with a club made of metallic glass—a resilient conductor that looks like metal—and the glass not ...

Superconducting circuits, simplified

Oct 17, 2014

Computer chips with superconducting circuits—circuits with zero electrical resistance—would be 50 to 100 times as energy-efficient as today's chips, an attractive trait given the increasing power consumption ...

Protons hog the momentum in neutron-rich nuclei

Oct 16, 2014

Like dancers swirling on the dance floor with bystanders looking on, protons and neutrons that have briefly paired up in the nucleus have higher-average momentum, leaving less for non-paired nucleons. Using ...

Cosmic jets of young stars formed by magnetic fields

Oct 16, 2014

Astrophysical jets are counted among our Universe's most spectacular phenomena: From the centers of black holes, quasars, or protostars, these rays of matter sometimes protrude several light years into space. ...

User comments : 0