Researchers implement a multi-photon approach in quantum cryptography

Oct 04, 2012

Move over money, a new currency is helping make the world go round. As increasing volumes of data become accessible, transferable and, therefore, actionable, information is the treasure companies want to amass. To protect this wealth, organizations use cryptography, or coded messages, to secure information from "technology robbers." This group of hackers and malware creators increasingly is becoming more sophisticated at breaking encrypted information, leaving everyone and everything, including national security and global commerce, at risk.

But the threat to information breach may be drastically reduced as a result of a technology breakthrough that combines quantum mechanics and cryptography. University of Oklahoma electrical and computer engineering professor Pramode Verma and his colleagues Professor Subhash Kak from Oklahoma State University and Professor Yuhua Chen from the University of Houston have, at the OU-Tulsa College of Engineering labs, demonstrated a for cryptography that offers the potential of unconditional security.

"Unfortunately, all commercial cryptography techniques used today are based on what is known as computational security," Verma said. "This means that as increases, they are increasingly susceptible to brute force and other attacks based on that can recover information without knowing the key to decode the information." Cryptography techniques based on are not susceptible to such attacks under any imaginable condition.

In 2006, Kak postulated a theory known as the three-stage protocol, which relies on the of to ensure hackers can't locate or replicate the information used to transmit information. The first laboratory demonstration of Kak's concept took place at the College of Engineering labs at the OU-Tulsa Schusterman Center. This is an important step toward the widespread adoption of Kak's discovery and may lead to a future in which, Verma said, "Basically, no matter how long or how hard they try, technology robbers can no longer decrypt or hack transmitted information."

This breakthrough has widespread economic and global applications. Quantum cryptography has been used in rare instances, primarily Swiss banks, but is limited by its short transmission distance and slow speed. Verma and his research team's technology demonstration suggest the potential for breaking those barriers.

"As we continue to test this promising method of quantum cryptology, we can demonstrate its value and accelerate the adoption in the business world," Verma said.

The widespread application of quantum cryptology could someday ensure that technology robbers won't be able to break into the information bank.

Explore further: Physicists provide new insights into the world of quantum materials

add to favorites email to friend print save as pdf

Related Stories

World Cup Security Uses Physics To Thwart Hackers

Jun 21, 2010

South African physicists working to protect data networks at the World Cup hope to provide something that no goalkeeper can promise: perfect defense. They're tapping the laws of physics to prevent hackers ...

Researchers weight safety of quantum cryptology

Mar 31, 2011

Scientists in Belgium and Spain have proved for the first time that new systems of quantum cryptology are much safer than current security systems. The study was published in the journal Nature Communications.

Recommended for you

Quantum mechanics to charge your laptop?

Sep 18, 2014

Top scientists from UC Berkeley and MIT found the expertise they lacked at FIU. They invited Sakhrat Khizroev, a professor with appointments in both medicine and engineering, to help them conduct research ...

Physicists design zero-friction quantum engine

Sep 16, 2014

(Phys.org) —In real physical processes, some energy is always lost any time work is produced. The lost energy almost always occurs due to friction, especially in processes that involve mechanical motion. ...

Fluid mechanics suggests alternative to quantum orthodoxy

Sep 12, 2014

The central mystery of quantum mechanics is that small chunks of matter sometimes seem to behave like particles, sometimes like waves. For most of the past century, the prevailing explanation of this conundrum ...

User comments : 0