Researchers implement a multi-photon approach in quantum cryptography

Oct 04, 2012

Move over money, a new currency is helping make the world go round. As increasing volumes of data become accessible, transferable and, therefore, actionable, information is the treasure companies want to amass. To protect this wealth, organizations use cryptography, or coded messages, to secure information from "technology robbers." This group of hackers and malware creators increasingly is becoming more sophisticated at breaking encrypted information, leaving everyone and everything, including national security and global commerce, at risk.

But the threat to information breach may be drastically reduced as a result of a technology breakthrough that combines quantum mechanics and cryptography. University of Oklahoma electrical and computer engineering professor Pramode Verma and his colleagues Professor Subhash Kak from Oklahoma State University and Professor Yuhua Chen from the University of Houston have, at the OU-Tulsa College of Engineering labs, demonstrated a for cryptography that offers the potential of unconditional security.

"Unfortunately, all commercial cryptography techniques used today are based on what is known as computational security," Verma said. "This means that as increases, they are increasingly susceptible to brute force and other attacks based on that can recover information without knowing the key to decode the information." Cryptography techniques based on are not susceptible to such attacks under any imaginable condition.

In 2006, Kak postulated a theory known as the three-stage protocol, which relies on the of to ensure hackers can't locate or replicate the information used to transmit information. The first laboratory demonstration of Kak's concept took place at the College of Engineering labs at the OU-Tulsa Schusterman Center. This is an important step toward the widespread adoption of Kak's discovery and may lead to a future in which, Verma said, "Basically, no matter how long or how hard they try, technology robbers can no longer decrypt or hack transmitted information."

This breakthrough has widespread economic and global applications. Quantum cryptography has been used in rare instances, primarily Swiss banks, but is limited by its short transmission distance and slow speed. Verma and his research team's technology demonstration suggest the potential for breaking those barriers.

"As we continue to test this promising method of quantum cryptology, we can demonstrate its value and accelerate the adoption in the business world," Verma said.

The widespread application of quantum cryptology could someday ensure that technology robbers won't be able to break into the information bank.

Explore further: Quantum computers could greatly accelerate machine learning

Related Stories

World Cup Security Uses Physics To Thwart Hackers

Jun 21, 2010

South African physicists working to protect data networks at the World Cup hope to provide something that no goalkeeper can promise: perfect defense. They're tapping the laws of physics to prevent hackers ...

Researchers weight safety of quantum cryptology

Mar 31, 2011

Scientists in Belgium and Spain have proved for the first time that new systems of quantum cryptology are much safer than current security systems. The study was published in the journal Nature Communications.

Recommended for you

Scientists succeed in linking two different quantum systems

18 hours ago

Physicists at the Universities of Bonn and Cambridge have succeeded in linking two completely different quantum systems to one another. In doing so, they have taken an important step forward on the way to a quantum computer. ...

First glimpse inside a macroscopic quantum state

Mar 27, 2015

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

Theory of the strong interaction verified

Mar 26, 2015

The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei have exactly those properties that make our world and ultimately our existence possible. Eighty years after ...

3,000 atoms entangled with a single photon

Mar 25, 2015

Physicists from MIT and the University of Belgrade have developed a new technique that can successfully entangle 3,000 atoms using only a single photon. The results, published today in the journal Nature, repres ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.