Searching for molecular radical's secrets of stability

Oct 30, 2012
Synthesizing metalloradicals.

For the first time, scientists synthesized and characterized a metal-containing complex long thought to be too unstable to study. This complex piqued the interest of scientists at Pacific Northwest National Laboratory because the metals inside this metalloradical are held together by a bond between two tungsten or molybdenum atoms. The lack of strings of atoms, called ligands, around the metals is unusual, and the instability of the molecules has made them impossible to observe. Until now.

"We were happy to find that the oxidized -metal bonded complex could be isolated.  The computational study of the molecular orbitals provides an explanation for the observation that the two metals are closer in the oxidized complex," said Dr. Morris Bullock, a PNNL scientist who worked on the study.

Proteins are often based on metalloradicals. To be able to delve into the arrangement of atoms and how they behave could open doors in the development of biofuels as well as the creation of catalysts that mimic natural proteins in creating energy and fuels.

Unlike the radical molecules that scientists knew existed, but could not observe, the new version is stable enough to be isolated and characterized. The team conducted theoretical studies, including relativistic calculations, and experimental studies on the complex. The team benefitted from a new capability that allowed them to integrate magnetic resonance measurements and electronic structure calculations to understand the structure and dynamics of complex systems.

In characterizing the complex, researchers made two key discoveries. First, the complex contains a shorter-than-expected metal-metal bond and, as desired, the metals are not supported by bridging . Second, the complex's lone electron does not favor one metal over the other. Rather, it spends equal time around the two tungsten or molybdenum . This research challenges the paradigm that metal-bridging ligands are vital to stabilizing dinuclear metalloradicals.

Explore further: Simulations for better transparent oxide layers

More information: van der Eide EF, P Yang, ED Walter, T Liu, and RM Bullock. 2012. "Dinuclear Metalloradicals Featuring Unsupported Metal-Metal Bonds."Angewandte Chemie International Edition 51(33):8361-8364. DOI: 10.1002/anie.201203531

Related Stories

New Direction for Hydrogen Atom Transfers

Oct 19, 2005

In the annals of chemistry, there are many examples of hydrogen atoms moving from metals to carbon atoms. But no one has ever directly observed the reverse reaction — hydrogen atoms moving from carbon to a metal — until ...

Recommended for you

Simulations for better transparent oxide layers

18 hours ago

Touchscreens and solar cells rely on special oxide layers. However, errors in the layers' atomic structure impair not only their transparency, but also their conductivity. Using atomic models, Fraunhofer ...

Team pioneers strategy for creating new materials

Aug 29, 2014

Making something new is never easy. Scientists constantly theorize about new materials, but when the material is manufactured it doesn't always work as expected. To create a new strategy for designing materials, ...

Plug n' Play protein crystals

Aug 29, 2014

Almost a hundred years ago in 1929 Linus Pauling presented the famous Pauling's Rules to describe the principles governing the structure of complex ionic crystals. These rules essentially describe how the ...

User comments : 0