Molecular motors of nucleic acid: Researchers work to improve screening of helicase-targeting drugs

Oct 04, 2012
Molecular motors of nucleic acid
Credit: Thinkstock

European scientists investigated the dynamic unfolding of DNA during replication by generating a tool that could subsequently be applied to screen helicase-targeting drugs for infection and oncologic applications.

In order to study the mechanical unfolding and refolding of various molecules including proteins and , and determine misfolded states, special equipment and techniques are required. To this end, and atomic force microscopes are proving extremely versatile tools that facilitate access to the inner functioning of biomolecules at an unprecedented level of detail.

The European Sminafel project focused on the activity of the helicase enzymes that assist the replication-repair of DNA. By hydrolysing adenosine triphosphate (ATP), these proteins convert chemical energy to the unzipping of the .

Scientists developed and optimised an optical tweezer-related technology that enabled the investigation of helicase function. More specifically, a DNA hairpin was fixed onto coated beads between a micropipette and an optical trap, and fluxing of the helicase and ATP solutions was facilitated through a microfluidics system. Various parameters of the system, including the valves and the length of the were standardised to allow efficient opening of the DNA hairpin, allowing the measurement of helicase activity.

Experimental results showed that the amplitude of fluctuations in the helicase activity remained constant independently of ATP concentration. The only determinant factors proved to be the opening-closing fluctuations of the .

The Sminafel technology constituted a significant step towards understanding the functioning of molecular motors involved in the DNA molecular repair and duplication machinery. The developed system is envisioned to provide a unique tool for studying various biomolecules in detail.

Explore further: Surprise: Lost stem cells naturally replaced by non-stem cells, fly research suggests

add to favorites email to friend print save as pdf

Related Stories

Gene's function may give new target for cancer drugs

Sep 12, 2012

(Phys.org)—Purdue University scientists have determined that a gene long known to be involved in cancer cell formation and chemotherapy resistance is key to proper RNA creation, an understanding that could one day lead ...

Recommended for you

For resetting circadian rhythms, neural cooperation is key

2 hours ago

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

Rapid and accurate mRNA detection in plant tissues

4 hours ago

Gene expression is the process whereby the genetic information of DNA is used to manufacture functional products, such as proteins, which have numerous different functions in living organisms. Messenger RNA (mRNA) serves ...

For cells, internal stress leads to unique shapes

23 hours ago

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Adventurous bacteria

Apr 16, 2014

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

User comments : 0

More news stories

Fear of the cuckoo mafia

If a restaurant owner fails to pay the protection money demanded of him, he can expect his premises to be trashed. Warnings like these are seldom required, however, as fear of the consequences is enough to ...

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Is Parkinson's an autoimmune disease?

The cause of neuronal death in Parkinson's disease is still unknown, but a new study proposes that neurons may be mistaken for foreign invaders and killed by the person's own immune system, similar to the ...