A molecular glance on solar water splitting: The hunt for electron holes

Oct 29, 2012
A molecular glance on solar water splitting: The hunt for electron holes
Credit: iStock

Hydrogen production by solar water splitting in photoelectrochemical cells (PEC) has long been considered the holy grail of sustainable energy research. Iron oxide is a promising electrode material. An international team of researchers led by Empa, the Swiss Federal Laboratories for Materials Science and Technology, have now gained in-depth insights into the electronic structure of an iron oxide electrode – while it was in operation. This opens up new possibilities for an affordable hydrogen production from solar energy.

Hematite, the mineral form of iron oxide (or trivially, rust), is a promising for photoelectro-chemical cells (PEC) because of its affordability, availability, high stability and good spectral match to the . Although it has the potential of a 15% solar-to- conversion efficiency, its actual efficiency is lower than that of other . This is due to hematite's electronic structure, which only allows for ultrashort electron-hole excited-state lifetimes.

Helpful holes in hematite

A molecular glance on solar water splitting: The hunt for electron holes
Schematic drawing of a photoelectrochemical cell with a 30 nm thin hematite photoanode (orange), properly wired, in contact with electrolyte (blue), illuminated with visible light, separated by a 100 nm thin membrane from the vacuum environment, and analyzed in situ with soft X-rays in the ALS synchrotron.

Electrons are well-known (negative) charge carriers, indispensable in our daily lives, but they do not play this role alone. When an electron leaves its assigned place, it leaves behind a hole that can effectively behave like a positive charge carrier, provided that the electron and hole remain separated and do not recombine. In modern semiconductor electronics, holes are important charge carriers, without which devices like batteries, capacitors, fuel cells, , and PEC could not operate. PEC electrodes typically form electron-hole pairs when struck by sunlight. In PEC photoanodes made of hematite, the generated holes must diffuse to the , where they can oxidize water and form oxygen.

However, the electronic structure of hematite is such that the photo-generated holes tend to recombine with the electrons before reaching the surface. As a result, the resulting photocurrent is limited by the relatively few holes that actually do reach the surface. Recent efforts to optimize the nanostructured morphologies of hematite photoanodes have led to significant improvements in performance, but in spite of these efforts, the overall in hematite remains at only about a third of its potential. An intelligent management of electron and hole transport is, therefore, critical for a better materials performance.

In this context, a better understanding of hole states at the hematite surface has been the subject of much interest as well as debate. It has long been suspected that in hematite, two types of holes with different power are formed. The existence of different types of holes with disparate reactivity toward water oxidation has broad implications for the ultimate performance of hematite. But it is quite difficult to detect such holes, and studies of this phenomenon are complicated by numerous technical constraints. Moreover, the holes are transitional and quite elusive.

Not all holes are created equal

In a recent study published in the Journal of Physical Chemistry C, Empa researchers Artur Braun and Debajeet Bora and their colleagues from EPF Lausanne, the University of Basel, China and the US studied the nature of photoelectrically generated holes in a PEC that had been specially designed for gathering data while the cell is in operation. They recorded soft X-ray absorption spectra under simulated sunlight and in the dark and identified two new spectral signatures corresponding to two different hole transitions, an O 2p hole transition into the charge-transfer band and an Fe 3d-type hole transition into the upper Hubbard band. According to Braun, this is the first time that the electronic structure of a PEC photoanode has been analyzed while it was in real water splitting action, i.e. in contact with electrolyte, under anodic bias and illuminated by visible light. "The preparations for this extremely complex experiment took us three years", says Braun. "After all, soft X-ray spectroscopy works only in ultra-high vacuum, and photoelectrochemistry works only in liquids. Combining both was technically a great advancement. Yet, I would say we were very fortunate to discover the two electron holes in an operating PEC."

Their groundbreaking experiment demonstrated the formation of two different types of electron holes at the semiconductor-liquid interface under the exact conditions, at which the photocurrent arises. Quantitative analysis of their spectral signatures revealed that both types of holes, contrary to earlier speculation and historical perception, contribute to the resulting photocurrent. "This is a milestone in the understanding of solar water splitting and encouraging news for researchers worldwide who are working to optimize hematite for PEC photoanodes", says Braun.

Explore further: Image: Multiple protostars within IRAS 20324+4057

More information: A Braun, K Sivula, DK Bora, J Zhu, L Zhang, M Grätzel, J Guo, EC Constable; Direct Observation of Two Electron Holes in a Hematite Photo-Anode during Photoelectrochemical Water Splitting; J Phys Chem C 116, 16870 (2012), DOI: 10.1021/jp304254k
ALS Science Highlight #256, 26 September 2012: Two Electron Holes in Hematite Facilitate Water Splitting

Related Stories

Improving performance of a solar fuel catalyst

Oct 04, 2012

(Phys.org)—Hydrogen gas that is created using solar energy to split water into hydrogen and oxygen has the potential to be a cost-effective fuel source if the efficiency of the catalysts used in the water-splitting ...

Image: Coronal hole on the sun

Jun 06, 2012

(Phys.org) -- This image of a coronal hole on the sun bears a remarkable resemblance to the 'Sesame Street' character Big Bird. Coronal holes are regions where the sun's corona is dark.

Recommended for you

Astronomers: 'Tilt-a-worlds' could harbor life

14 hours ago

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...

Pushy neighbors force stellar twins to diverge

21 hours ago

(Phys.org) —Much like an environment influences people, so too do cosmic communities affect even giant dazzling stars: Peering deep into the Milky Way galaxy's center from a high-flying observatory, Cornell ...

Image: Multiple protostars within IRAS 20324+4057

Apr 14, 2014

(Phys.org) —A bright blue tadpole appears to swim through the inky blackness of space. Known as IRAS 20324+4057 but dubbed "the Tadpole", this clump of gas and dust has given birth to a bright protostar, ...

Research group to study interstellar molecules

Apr 11, 2014

From April 2014, a new group will study interstellar molecules and use them to explore the entire star and planet formation process at the Max Planck Institute for Extraterrestrial Physics. Newly appointed ...

Astronomers suggest more accurate star formation rates

Apr 10, 2014

(Phys.org) —Astronomers have found a new way of predicting the rate at which a molecular cloud—a stellar nursery—will form new stars. Using a novel technique to reconstruct a cloud's 3-D structure, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Fleetfoot
not rated yet Oct 30, 2012
This article appears to be misplaced in the "astronomy" category, perhaps "Earth Sciences" would be more appropriate.

More news stories

Astronomers: 'Tilt-a-worlds' could harbor life

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...

NASA Cassini images may reveal birth of a Saturn moon

(Phys.org) —NASA's Cassini spacecraft has documented the formation of a small icy object within the rings of Saturn that may be a new moon, and may also provide clues to the formation of the planet's known ...

Vegetables on Mars within ten years?

The soil on Mars may be suitable for cultivating food crops – this is the prognosis of a study by plant ecologist Wieger Wamelink of Wageningen UR. This would prove highly practical if we ever decide to ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.