Researchers find new way to mimic the color and texture of butterfly wings

Oct 11, 2012
Yang's group has a new way of combining the structural color and superhydrophobicity found in butterfly wings. This drop of water sits on a wafer made with their process. Credit: Advanced Functional Materials

(Phys.org)—The colors of a butterfly's wings are unusually bright and beautiful and are the result of an unusual trait; the way they reflect light is fundamentally different from how color works most of the time.

A team of researchers at the University of Pennsylvania has found a way to generate this kind of "structural color" that has the added benefit of another trait of : super-, or the ability to strongly repel water.

The research was led by Shu Yang, associate professor in the Department of at Penn's School of Engineering and Applied Science, and included other members of her group: Jie Li, Guanquan Liang and Xuelian Zhu.

Their research was published in the journal .

"A lot of research over the last 10 years has gone into trying to create structural colors like those found in nature, in things like butterfly wings and opals," Yang said." People have also been interested in creating superhydrophobic surfaces which is found in things like lotus leaves, and in butterfly wings, too, since they couldn't stay in air with clinging to them."

The two qualities—structural color and superhydrophobicity—are related by structures. Structural color is the result of periodic patterns, while superhydrophobicity is the result of

When light strikes the surface of a periodic lattice, it's scattered, interfered or diffracted at a wavelength comparable to the lattice size, producing a particularly bright and intense color that is much stronger than color obtained from or dyes.

When water lands on a , its roughness reduces the effective contact area between water and a solid area where it can adhere, resulting in an increase of water and water droplet mobility on such surface. 

While trying to combine these traits, engineers have to go through complicated, multi-step processes, first to create color-providing 3D structures out of a polymer, followed by additional steps to make them rough in the nanoscale. These secondary steps, such as nanoparticle assembly, or plasma etching, must be performed very carefully as to not vary the optical property determined by the 3D periodic lattice created in the first step.

Yang's method begins with a non-conventional photolithography technique, holographic lithography, where a laser creates a cross-linked 3D network from a material called a photoresist. The photoresist material in the regions that are not exposed to the laser light are later removed by a solvent, leaving the "holes" in the 3D lattice that provides structural color.

Instead of using nanoparticles or plasma etching, Yang's team was able to add the desired nano-roughness to the structures by simply changing solvents after washing away the photoresist. The trick was to use a poor solvent; the better a solvent is, the more it tries to maximize the contact with the material. Bad solvents have the opposite effect, which the team used to its advantage at the end of the photolithography step.

"The good solvent causes the structure to swell," Yang said. "Once it has swollen, we put in the poor solvent. Because the polymer hates the poor solvent, it crunches in and shrivels, forming nanospheres within the 3D lattice.

"We found that the worse the solvent we used, the more rough we could make the structures," Yang said.

Both superhydrophobicity and structural color are in high demand for a variety of applications. Materials with structural color could be used in as light-based analogs of semiconductors, for example, for light guiding, lasing and sensing. As they repel liquids, superhydrophobic coatings are self-cleaning and waterproof. Since optical devices are highly dependent on their degree of light transmission, the ability to maintain the device surface's dryness and cleanliness will minimize the energy consumption and negative environmental impact without the use of intensive labors and chemicals. Yang has recently received a grant to develop such coatings for solar panels.

The researchers have ideas for how the two traits could be combined in one application, as well.

"Specifically, we're interested in putting this kind of material on the outside of buildings," Yang said. "The structural color we can produce is bright and highly decorative, and it won't fade away like conventional pigmentation color dies. The introduction of nano-roughness will offer additional benefits, such as energy efficiency and environmental friendliness.

"It could be a high-end facade for the aesthetics alone, in addition to the appeal of its self-cleaning properties. We are also developing energy efficient building skins that will integrate such materials in optical sensors."

Explore further: Thinnest feasible nano-membrane produced

More information: onlinelibrary.wiley.com/doi/10.1002/adfm.201200013/abstract

Related Stories

Coating copies microscopic biological surfaces

Sep 17, 2008

Someday, your car might have the metallic finish of some insects or the deep black of a butterfly's wing, and the reflectors might be patterned on the nanostructure of a fly's eyes, according to Penn State ...

Trapping butterfly wings' qualities

Jan 04, 2012

Butterflies have inspired humans since the time of ancient Egypt, but now they're also inspiring researchers to look toward nature to help create the next generation of waterproof materials for electronics ...

Photonic gels are colorful sensors

Oct 10, 2012

(Phys.org)—Materials scientists at Rice University and the Massachusetts Institute of Technology (MIT) have created very thin color-changing films that may serve as part of inexpensive sensors for food ...

Recommended for you

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...