New micropumps for hand-held medical labs produce pressures 500 times higher than car tire

October 31, 2012
New micropumps for hand-held medical labs produce pressures 500 times higher than car tire

In an advance toward analyzing blood and urine instantly at a patient's bedside instead of waiting for results from a central laboratory, scientists are reporting development of a new micropump capable of producing pressures almost 500 times higher than the pressure in a car tire. Described in ACS' journal Analytical Chemistry, the pumps are for futuristic "labs-on-a-chip," which reduce entire laboratories to the size of a postage stamp.

Shaorong Liu and colleagues explain that powerful pumps are critical for high performance liquid chromatography (HPLC), a mainstay laboratory testing technology used in , and numerous other purposes. HPLC can analyze 80 percent of all known . Scientists are trying to miniaturize HPLC for handheld devices, which would eliminate the need to send samples to central labs and wait for the results. One stumbling block, however, is the lack of suitable small, powerful pumps to push samples through HPLC devices.

They describe invention of a device six times more powerful than the best existing pump of this kind. Linked together in series, their electroosmotic pumps can produce more than 17,000 pounds per square inch of pressure. The pumps use electroosmotic flow, in which an makes charged particles flow through a narrow channel. The new pumps could produce even higher pressures, the scientists report.

Explore further: A medical micropump

More information: "Miniaturized Electroosmotic Pump Capable of Generating Pressures of More than 1200 Bar" Anal. Chem., Article ASAP. DOI: 10.1021/ac3025703

The pressure output of a pump cannot be increased simply by connecting several of them in series. This barrier is eliminated with the micropump developed in this work. The pump is actually an assembly of a number of fundamental pump units connected in series. The maximum pressure output of this pump assembly is directly proportional to the number of serially connected pump units. Theoretically, one can always enhance the pressure output by adding more pump units in the assembly, but in reality the upper pressure is constrained by the microtees or microunions joining the pump components. With commercially available microtees and microunions, pressures of more than 1200 bar have been achieved. We have recently experimented using open capillaries to build this pump, but many capillaries have to be utilized in parallel to produce an adequate flow to drive HPLC separations. In this paper, we synthesize polymer monoliths inside 75 μm i.d. capillaries, use these monoliths to assemble miniaturized pumps, characterize the performance of these pumps, and employ these pumps for HPLC separations of intact proteins. By tuning the experimental parameters for monolith preparations, we obtain both negatively and positively charged submicrometer capillary channels conveniently. Each monolith in a 75 μm i.d. capillary is equivalent to several thousands of open capillaries.

Related Stories

A medical micropump

November 13, 2006

Using material similar to bathtub caulk, University of Utah engineers invented a tiny, inexpensive "micropump" that could be used to move chemicals, blood or other samples through a card-sized medical laboratory known as ...

Pump design could give new hope to heart patients

April 12, 2007

A new counter-flow heart pump being developed by Queensland University of Technology has the potential to revolutionise future designs of the mechanical heart. Lead researcher Associate Professor Andy Tan said the heart pump's ...

Industrial chemical found in Cubicin

April 10, 2008

The U.S. Food and Drug Administration said Cubist Pharmaceuticals is warning that an industrial chemical has been found in the antibiotic Cubicin.

Explosion on chip sets liquid in motion

October 30, 2008

( -- PhD student, Dennis van den Broek, of the University of Twente, Netherlands, has developed a new type of miniature motor, the micro-bubble actuator. This ‘motor’, which can be used in laboratories the ...

New economic electric water cooling pump for automobiles

August 31, 2012

The low cost, high efficiency electric pump offers an environmentally friendly alternative to mechanical counterparts. Aisin Seki Co., Ltd has now successfully developed a smaller, cheaper electric cooling pump through some ...

Recommended for you

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.