New material puts pressure on greenhouse gases

Oct 25, 2012
New material puts pressure on greenhouse gases
Credit: Uon

(Phys.org)—Researchers at the University of Nottingham in the United Kingdom recently discovered a novel material that could be used by sophisticated technologies to fight global warming. The study was funded in part by an European Research Council (ERC) Advanced Grant worth EUR 2.5 million awarded to Professor Martin Schröder for the COORDSPACE project ('Chemistry of coordination space: extraction, storage, activation and catalysis') [under the EU's Seventh Framework Programme (FP7)]. The results, recently presented in the journal Nature Chemistry, demonstrate that this material, called NOTT-300, could substitute for carbon dioxide (CO2) absorption.

'Our has potential for applications in carbon capture technologies to reduce CO2 emissions and therefore contribute to the reduction of greenhouse gases in the atmosphere,' said research leader Prof. Martin Schröder of the University of Nottingham. 'It offers the opportunity for the development of an "easy on/easy off" capture system that carries fewer economic and environmental penalties than existing technologies. It could also find application in gas separation processes where the removal of CO2 or acidic gases such as SO2 is required.

According to the researchers, their findings could help us understand how to solve the problem of . 'It is widely accepted that it is imperative that the CO2 footprint of human activity is reduced in order to limit the negative effects of ,' Prof. Schröder said. 'There are powerful drivers to develop efficient strategies to remove CO2 using alternative materials that simultaneously have high , high selectivity for CO2 and high rates of regeneration at an economically viable cost.'

The researchers found that NOTT-300 covers all these criteria. Thanks to its properties, NOTT-300 could boost environmental and chemical sustainability. With regards to cost, this material is synthesised from relatively simple and inexpensive organic materials (we would say "product" instead of "materials" but please only change if correct scientifically. The only solvent is water.

'The material shows high uptake of CO2 and SO2,' the Nottingham researcher said. 'In the case of SO2, this is the highest reported for the class of materials to date. It is also selective for these gases, with other gases - such as hydrogen, methane, nitrogen, oxygen - showing no or very little adsorption into the pores.'

Additionally, the team found that the material facilitates the release of absorbed gas molecules through pressure loss, and it has high chemical stability to all common organic solvents. NOTT-300 is also stable in water and is resistant to high temperatures up to 400 °C.

Explore further: Drought may take toll on Congo rainforest, study finds

More information: Yang, S., et al. 'Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host', Nature Chemistry, 2012. doi:10.1038/nchem.1457

add to favorites email to friend print save as pdf

Related Stories

New CO2 'scrubber' from ingredient in hair conditioners

Mar 24, 2010

Relatives of ingredients in hair-conditioning shampoos and fabric softeners show promise as a long-sought material to fight global warming by "scrubbing" carbon dioxide (CO2) out of the flue gases from coal-burning ...

Opening the Door for CO2

Aug 24, 2009

(PhysOrg.com) -- Until recently, factory smokestacks that produced nothing but carbon dioxide and water vapor were considered exemplary. Now CO2 has become notorious as a greenhouse gas, and the danger of climate change has ...

Recommended for you

Drought may take toll on Congo rainforest, study finds

3 hours ago

(Phys.org) —A new analysis of NASA satellite data shows Africa's Congo rainforest, the second-largest tropical rainforest in the world, has undergone a large-scale decline in greenness over the past decade.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

chromosome2
not rated yet Oct 27, 2012
Can something like this be used in an underwater rebreather? That might be a promising market to use for ramping up production.

More news stories